Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T14:30:00.308Z Has data issue: false hasContentIssue false

Preparation and Properties of Novel Aerodynamic Pressure-sensitive Paint Via the Sol-gel Method

Published online by Cambridge University Press:  31 January 2011

Feng-Zhi Jiang*
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Ren Xu
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Duo-Yuan Wang
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Xing-De Dong
Affiliation:
Beijing Institute of Aerodynamics, Beijing, 100074, China
Gui-Chun Li
Affiliation:
Beijing Institute of Aerodynamics, Beijing, 100074, China
Dao-Ben Zhu
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Lei Jiang
Affiliation:
The Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel aerodynamic pressure-sensitive paint (PSP) was prepared by using the sol-gel process for measuring the pressure distribution variation on an aerodynamic surface with an oxygen-containing gas flow. In this PSP, RuII complexes as oxygen-sensitive probe molecules excited with visible light of 436 nm were dispersed into the organic modified silica matrix film prepared by the sol-gel method. A linear relationship between the emission intensity and the oxygen partial pressure was achieved in the airflow pressure range of 10.1–405 kPa, and the slope that represents the sensitivity of PSP for oxygen quenching reaches 0.75. A pressure distribution map was demonstrated showing a spatial resolution of 0.25 mm.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Woodmansee, M.A. and Dutton, J.C., Exp. Fluids 24, 163 (1998).Google Scholar
2.Kavandi, J., Callis, J.B., Gouterman, M.P., Khalil, G., Wright, D., Green, E., Burns, D., and McLachlan, B., Rev. Sci. Instrum. 61, 3340 (1990).CrossRefGoogle Scholar
3.Morris, M.J., Donovan, J.F., Kegelman, J.T., Schwab, S.D., Levy, R.L., and Crites, R.C., AIAA J. 31, 419 (1993).Google Scholar
4.Crites, R. and Benne, M., AIAA Pap. 95-0106 (1995).Google Scholar
5.Cler, D. and Lamb, M., J. Aircr. 33, 1109 (1996).Google Scholar
6.Coyle, L.M., Chapman, D., Khalil, G., Schibli, E., and Gouterman, M., J. Lumin. 82, 33 (1999).CrossRefGoogle Scholar
7.Liu, T., Campbell, B.T., Burns, S.P., and Sullivan, J.P., Appl. Mech. Rev. 50, 227 (1997).Google Scholar
8.Bell, J.H., Schairer, E.T., Hand, L.A., and Metha, R.D., Annu. Rev. Fluid Mech. 33, 155 (2001).Google Scholar
9.Uibel, R., Khalil, G., Gouterman, M., Gallery, J., and Callis, J., AIAA Pap. 93-0179 (1993).Google Scholar
10.Gouterman, M.P., Kavandi, J.L., Gallery, J., and Callis, J.B., Euro pean Patent No. 0 472 243 A2 (26 Feb. 1992).Google Scholar
11.Volan, A. and Alati, L., Proceedings of the 14th International Congress on Instrumentation in Aerospace Simulation Facilities (ICIASF) (Inst. of Electrical and Electronics Engineers, New York, 1991), p. 10.Google Scholar
12.Bukov, A.P., Orlov, A.A., Mosharov, V.E., Radchenko, V.N., Pesetsky, V.A., Sorokin, A.V., Phonov, S.D., Alaty, L., and Colucci, V., Wind Tunnels and Wind Tunnel Test Techniques (Royal Aeronautical Society, London, United Kingdom, 1992), pp. 8.1, 8.11.Google Scholar
13.Mosharov, V., Kuzmin, M., Orlov, A., Radchenko, V., Sadovskii, N., and Troyanovsky, I., European Patent No. 0 558 771 A1 (8 Sept 1992).Google Scholar
14.Morris, M.J., Donovan, J.F., Kegeiman, J.T., Schwab, S.D., Levy, R.L., and Crites, R.C., AIAA Pap. 92-0264 (1992).Google Scholar
15.Morris, M.J., Benne, M.E., Crites, R.C., and Donovan, J.F., AIAA Pap. 93-0175 (1993).Google Scholar
16.Donovan, J.F., Morris, M.J., Benne, M.E., and Crites, R.C., AIAA Pap. 93-0176 (1993).Google Scholar
17.Crites, R.C., Benne, M.E., Morris, M.J., and Donovan, J.F., Wind Tunnels and Wind Tunnel Test Techniques (Royal Aeronautical Society, London, United Kingdom, 1992, pp. 9.1, 9.13.Google Scholar
18.Morris, M.J. and Donovan, J.F., AIAA Pap. 94-2231 (1994).Google Scholar
19.Sajben, M., AIAA J. 31, 2105 (1993).CrossRefGoogle Scholar
20.McLachlan, B.G., Bell, J.H., Park, H., Kennelly, R.A., Schreiner, J.A., Smith, S.C., Strong, J.M., Gallery, J., and Gouterman, M., J. Aircr. 32, 217 (1995).CrossRefGoogle Scholar
21.McLachlan, B.G. and Bell, J.H., Exp. Therm. Fluid Sci. 10, 475 (1995).CrossRefGoogle Scholar
22.Puklin, E., Carlson, B., Gouin, S., Costin, C., Green, E., Ponomarev, S., Tanji, H., and Gouterman, M., J. Appl. Polym. Sci. 77, 2795 (2000).3.0.CO;2-K>CrossRefGoogle Scholar
23.Demas, J.N. and De, B.A.Graff, Anal. Chem. 63, 829A (1991).Google Scholar
24.Mosharov, V., Radchenko, V., and Fonov, S., Luminescent pressure sensors in aerodynamic experiment. (Cent. Aerohydrodyn. Inst. (TsAGI), CWA Int. Corp., Moscow, Russia, 1997), p. 155.Google Scholar
25.Lippitsch, M.E., Pusterhofer, J., Leiner, M.J.P., and Wolfbeis, O.S., Anal. Chim. Acta. 205(1), 1 (1988).CrossRefGoogle Scholar
26.Xu, W., McDonough, R.C. III, Langsdorf, B., Demas, J.N., and DeGraff, B.A., Anal. Chem. 66, 4133 (1994).Google Scholar
27.Watkins, A.N., Wenner, B.R., Jordan, J.D., Xu, W., Demas, J.N., and Bright, F.V., Appl. Spectrosc. 52, 750 (1998).Google Scholar
28.Murtagh, M.T., Shahriari, M.R., and Krihak, M., Chem. Mater. 10, 3862 (1998).Google Scholar
29.Colvin, A.E. Jr., U.S. Patent No. 5 517 313 (1996).Google Scholar
30.Krinak, M.K. and Shahriari, M.R., Electron. Lett. 32, 240 (1996).Google Scholar
31.Murtagh, M.T., Ackley, D.E., and Shahriari, M.R., Electron. Lett. 32, 447 (1996).Google Scholar
32.McEvoy, A.K., McDonagh, C.M., and MacCraith, B.D., Analyst 121, 785 (1996).Google Scholar
33.MacCraith, B.D., O’Keefe, G., McEvoy, A.K., McDonagh, C.M., McGilp, J.F., Kelly, B.O., O’Mahony, J.D., and Cavanagh, M., Opt. Eng. 33, 3861 (1994).Google Scholar
34.MacCraith, B.D., O’Keefe, G., McDonagh, C.M., and McEvoy, A.K., Electron. Lett. 30, 888 (1994).Google Scholar
35.Rickard, S.J., Washburn, A.E., Morris, M.J., and Donovan, J.F., SAE Trans. 104, 1416 (1996).Google Scholar
36.Dowgwillo, R.M., Morris, M.J., Donovan, J.F., and Benne, M.E., J. Aircr. 33, 109 (1996).CrossRefGoogle Scholar
37.Abbitt, J.D., Fuentes, C.A., and Carroll, B.F., Opt. Lett. 21, 1797 (1996).Google Scholar
38.Bell, J.H. and McLachlan, B.G., Exp. Fluids 22, 78 (1997).CrossRefGoogle Scholar
39.Mendoza, D.R., AIAA J. 35, 1240 (1997).Google Scholar
40.Taghavi, R., Raman, G, and Bencic, T., Exp. Fluids 26, 481 (1999).Google Scholar
41.Watte, R.J. and Crosby, G.A., J. Am. Chem. Soc. 93, 3184 (1971).Google Scholar
42.Parker, C.A. and Rees, W.T., Analyst 85, 587 (1960).Google Scholar
43.Demas, J.N. and Crosby, G.A., J. Am. Chem. Soc. 93, 2841 (1971).Google Scholar
44.Dawson, W.R. and Windsor, M.W., J. Phy. Chem. 72, 3251 (1968).CrossRefGoogle Scholar
45.Juris, A. and Balzani, V., Coord. Chem. Rev. 84, 85 (1988).Google Scholar
46.Carraway, E.R., Demas, J.N., B.A. DeGraff, and J.R. Bacon, Anal. Chem. 63, 337 (1991).Google Scholar
47.Demas, J.N., DeGraff, B.A., and Xu, W.Y., Anal. Chem. 67, 1377 (1995).CrossRefGoogle Scholar
48.Hartmann, P. and Trettnak, W., Anal. Chem. 68, 2615 (1996).CrossRefGoogle Scholar
49.Xu, W., Schmidt, R., Whaley, M., Demas, J.N., DeGraff, B.A., Karikari, E.K., and Farmer, B.L., Anal. Chem. 67, 3172 (1995).CrossRefGoogle Scholar
50.Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, 301 (1985).CrossRefGoogle Scholar
51.Schanze, K.S., Carroll, B.F., Korotkevitch, S., and Morris, M.J., AIAA Pap. 97-0386 (1997).Google Scholar
52.Lamont, P.J. and Hunt, B.L., J. Fluid. Mech. 100, 471 (1980).Google Scholar