Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T17:25:16.521Z Has data issue: false hasContentIssue false

Preparation and photovoltaic properties of N-doped TiO2 nanocrystals in vacuum

Published online by Cambridge University Press:  08 January 2013

Hao-Hong Chen*
Affiliation:
Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Science, Shanghai Institute of Ceramics, Shanghai 200050, China
Fang Lei
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Jing-Tai Zhao
Affiliation:
Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Science, Shanghai Institute of Ceramics, Shanghai 200050, China
Ying Shi
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Jian-Jun Xie
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This work presents the preparation and characterization of N-doped TiO2 nanocrystals obtained by a solid-state reaction in vacuum with urea as the nitrogen source. The particle sizes of the products are smaller than 20 nm from the x-ray powder diffraction patterns and the transmission electron microscopy images. Different from the reported samples obtained in air or under dry N2 or NH3 gas flow, the doped nitrogen exists mainly as absorbed NOx groups but as smaller incorporated species in the nanocrystals, which is supported by the results from x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet–visible diffuse reflectance spectroscopy. Dependent on the nitrogen amount, the surface photovoltage (SPV) response reaches the maximum at the mediate molar ratio of 5:4 (urea to TiO2), which can be explained that proper nitrogen concentration can enhance the separation of the photogenerated carriers to improve the SPV intensity, but excess nitrogen can spread the impurity energy levels to narrow energy gaps, which reinforces the combination of the photogenerated electrons and holes and then decreases the SPV signal. The corresponding detailed discussion is also reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alivov, Y. and Fan, Z.Y.: Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles. Appl. Phys. Lett. 95(6), 063504 (2009).CrossRefGoogle Scholar
Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985 (2009).CrossRefGoogle ScholarPubMed
Das, K. and De, S.K.: Optical properties of the type-II core-shell TiO2@CdS nanorods for photovoltaic applications. J. Phys. Chem. C 113(9), 3494 (2009).CrossRefGoogle Scholar
Chou, C.S., Yang, R.Y., Yeh, C.K., and Lin, Y.J.: Preparation of TiO2/nano-metal composite particles and their applications in dye-sensitized solar cells. Powder Technol. 194(1–2), 95 (2009).CrossRefGoogle Scholar
Chen, H.A., Chen, S., Quan, X., and Zhang, Y.B.: Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis. Environ. Sci. Technol. 44(1), 451 (2010).CrossRefGoogle ScholarPubMed
Mitoraj, D. and Kisch, H.: On the mechanism of urea-induced titania modification. Chem. Eur. J. 16(1), 261 (2010).CrossRefGoogle ScholarPubMed
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269 (2001).CrossRefGoogle ScholarPubMed
Adachi, M., Yoshida, K., Kurata, T., Adachi, J., Tsuchiya, K., Mori, Y., and Uchida, F.: Shape control of highly crystallized titania nanorods based on formation mechanism. J. Mater. Res. 27(2), 440 (2012).CrossRefGoogle Scholar
Wu, J.S., Lo, S.H., Song, K., Vijayan, B.K., Li, W.Y., Gray, K.A., and Dravid, V.P.: Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. J. Mater. Res. 26(13), 1646 (2011).CrossRefGoogle Scholar
Cao, C.B., Li, J.L., Wang, X., Song, X.P., and Sun, Z.Q.: Current characterization and growth mechanism of anodic titania nanotube arrays. J. Mater. Res. 26(3), 437 (2011).CrossRefGoogle Scholar
Chen, X.B. and Burda, C.: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130(15), 5018 (2008).CrossRefGoogle Scholar
Chen, D.M., Yang, D., Geng, J.Q., Zhu, J.H., and Jiang, Z.Y.: Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Appl. Surf. Sci. 255(5), 2879 (2008).CrossRefGoogle Scholar
Li, Q., Liang, W., and Shang, J.K.: Modulation of MS2 virus adsorption on TiO2 semiconductor film by nitrogen doping. J. Mater. Res. 22(11), 3036 (2007).CrossRefGoogle Scholar
Liu, G., Yang, H.G., Wang, X.W., Cheng, L.N., Pan, J., Lu, G.Q., and Cheng, H.M.: Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 131(36), 12868 (2009).CrossRefGoogle ScholarPubMed
Zhang, J., Jin, Z., Feng, C., Yu, L., Zhang, J., and Zhang, Z.: ESR study on the visible photocatalytic mechanism of nitrogen-doped novel TiO2 synergistic effect of two kinds of oxygen vacancies. J. Solid State Chem. 184(11), 3066 (2011).CrossRefGoogle Scholar
Jia, L., Wu, C., Li, Y., Han, S., Li, Z., Chi, B., Pu, J., and Jian, L.: Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. Appl. Phys. Lett. 98(21), 211903 (2011).CrossRefGoogle Scholar
Reyes-Garcia, E.A., Sun, Y.P., Reyes-Gil, K., and Raftery, D.: N-15 solid state NMR and EPR characterization of N-doped TiO2 photocatalysts. J. Phys. Chem. C 111(6), 2738 (2007).CrossRefGoogle Scholar
Batzill, M., Morales, E.H., and Diebold, U.: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96(2), 026103 (2006).CrossRefGoogle ScholarPubMed
Lindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C.G., and Lindquist, S.E.: Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107(24), 5709 (2003).CrossRefGoogle Scholar
Jang, J.S., Kim, E.S., Kim, H.G., Ji, S.M., Kim, Y., and Lee, J.S.: Nitrogen-doped titanium oxide microrods decorated with titanium oxide nanosheets for visible light photocatalysis. J. Mater. Res. 25(6), 1096 (2010).CrossRefGoogle Scholar
Macak, J.M., Ghicov, A., Hahn, R., Tsuchiya, H., and Schmuki, P.: Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. J. Mater. Res. 21(11), 2824 (2006).CrossRefGoogle Scholar
Shao, G.S., Ma, T.Y., Zhang, X.J., Ren, T.Z., and Yuan, Z.Y.: Phosphorus and nitrogen co-doped titania photocatalysts with a hierarchical meso-/macroporous structure. J. Mater. Sci. 44(24), 6754 (2009).CrossRefGoogle Scholar
Diamandescu, L., Vasiliu, F., Tarabasanu-Mihaila, D., Feder, M., Vlaicu, A.M., Teodorescu, C.M., Macovei, D., Enculescu, I., Parvulescu, V., and Vasile, E.: Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater. Chem. Phys. 112(1), 146 (2008).CrossRefGoogle Scholar
Zhao, D., Huang, X., Tian, B., Zhou, S., Li, Y., and Du, Z.: The effect of electronegative difference on the electronic structure and visible light photocatalytic activity of N-doped anatase TiO2 by first-principles calculations. Appl. Phys. Lett. 98(16), 162107 (2011).CrossRefGoogle Scholar
Zhao, Z., Fan, J., Wang, J., and Li, R.: Effect of heating temperature on photocatalytic reduction of CO2 by N-TiO2 nanotube catalyst. Catal. Commun. 21, 32 (2012).CrossRefGoogle Scholar
Wang, E., Zhang, P., Chen, Y., Liu, Z., He, T., and Cao, Y.: Improved visible-light photocatalytic activity of titania activated by nitrogen and indium modification. J. Mater. Chem. 22(29), 14443 (2012).CrossRefGoogle Scholar
Beranek, R. and Kisch, H.: Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem. Photobiol. Sci. 7(1), 40 (2008).CrossRefGoogle ScholarPubMed
Zhang, X-R., Lin, Y-H., Zhang, J-F., He, D-Q., and Wang, D-J.: Photoinduced charge carrier properties and photocatalytic activity of N-doped TiO2 nanocatalysts. Acta Phys. Chim. Sin. 26(10), 2733 (2010).Google Scholar
Bacsa, R., Kiwi, J., Ohno, T., Albers, P., and Nadtochenko, V.: Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J. Phys. Chem. B 109(12), 5994 (2005).CrossRefGoogle ScholarPubMed
Yin, S., Aita, Y., Komatsu, M., and Sato, T.: Visible-light-induced photocatalytic activity of TiO2−xNy prepared by solvothermal process in urea–alcohol system. J. Eur. Ceram. Soc. 26(13), 2735 (2006).CrossRefGoogle Scholar
Dong, F., Zhao, W., Wu, Z., and Guo, S.: Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. J. Hazard. Mater. 162(2–3), 763 (2009).CrossRefGoogle ScholarPubMed
Yin, S., Zhang, Q., Saito, F., and Sato, T.: Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem. Lett. 32(4), 358 (2003).CrossRefGoogle Scholar
Yin, S., Ihara, K., Komatsu, M., Zhang, Q., Saito, F., Kyotani, T., and Sato, T.: Low temperature synthesis of TiO2−xNy powders and films with visible light responsive photocatalytic activity. Solid State Commun. 137(3), 132 (2006).CrossRefGoogle Scholar
Beranek, R., Neumann, B., Sakthivel, S., Janczarek, M., Dittrich, T., Tributsch, H., and Kisch, H.: Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies. Chem. Phys. 339(1–3), 11 (2007).CrossRefGoogle Scholar
Jing, L.Q., Li, S.D., Song, S., Xue, L.P., and Fu, H.G.: Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 92(9), 1030 (2008).CrossRefGoogle Scholar
Shang, J., Xu, Z.L., Du, Y.G., and Li, J.M.: Structure, surface properties and photocatalytic activity of TiO2 nanoparticles. J. Inorg. Mater. 16(6), 1211 (2001).Google Scholar
Li, Z.H., Wang, D.J., Wang, P., Lin, Y.H., Zhang, Q.L., and Yang, M.: Study of mechanism of photogenerated charge transfer in nano-TiO2. Chem. Phys. Lett. 411(4–6), 511 (2005).CrossRefGoogle Scholar
Guo, W., Wu, L., Chen, Z., Boschloo, G., Hagfeldt, A., and Ma, T.: Highly efficient dye-sensitized solar cells based on nitrogen-doped titania with excellent stability. J. Photochem. Photobiol., A 219(2–3), 180 (2011).CrossRefGoogle Scholar
Jiang, H., Wang, C., Wang, P., Li, J., and Lu, Z.: Surface properties and visible-light photoactivity of N-doped TiO2 nano-powders. J. Mater. Sci. Eng. 29(2), 161 (2011).Google Scholar
Feng, W.H., Song, Y.L., Wang, D.J., Zhai, J., and Jiang, L.: Effect of UV illumination treatment on surface photovoltaic properties of TiO2 films. Chem. J. Chin. Univ. 25(6), 1142 (2004).Google Scholar
Wang, Y.Q., Yu, X.J., and Sun, D.Z.: Synthesis, characterization, and photocatalytic activity of TiO2-xNx nanocatalyst. J. Hazard. Mater. 144(1–2), 328 (2007).CrossRefGoogle Scholar
Wang, X., Yang, Y., Jiang, Z., and Fan, R.: Preparation of TiNxO2-x photoelectrodes with NH3 under controllable middle pressures for dye-sensitized solar cells. Eur. J. Inorg. Chem. 2009 (23), 3481 (2009).CrossRefGoogle Scholar
Han, L., Xin, Y., Liu, H., Ma, X., and Tang, G.: Photoelectrocatalytic properties of nitrogen doped TiO2/Ti photoelectrode prepared by plasma based ion implantation under visible light. J. Hazard. Mater. 175(1–3), 524 (2010).CrossRefGoogle ScholarPubMed
Zhang, Y., Wang, D., Pang, S., Lin, Y., Jiang, T., and Xie, T.: A study on photo-generated charges property in highly ordered TiO2 nanotube arrays. Appl. Surf. Sci. 256(23), 7217 (2010).CrossRefGoogle Scholar
Yang, N., Li, G., Wang, W., Yang, X., and Zhang, W.F.: Photophysical and enhanced daylight photocatalytic properties of N-doped TiO2/g-C3N4 composites. J. Phys. Chem. Solids 72(11), 1319 (2011).CrossRefGoogle Scholar
Liu, K., Zhu, L., Jiang, T., Sun, Y., Li, H., and Wang, D.: Mesoporous TiO2 micro-nanometer composite structure: Synthesis, optoelectric properties, and photocatalytic selectivity. Int. J. Photoenergy 2012, 849062 (2012).CrossRefGoogle Scholar
Chen, X. and Burda, C.: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108(40), 15446 (2004).CrossRefGoogle Scholar
Yang, G., Jiang, Z., Shi, H., Xiao, T., and Yan, Z.: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20(25), 5301 (2010).CrossRefGoogle Scholar
Hu, S., Wang, A., Li, X., and Loewe, H.: Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light. J. Phys. Chem. Solids 71(3), 156 (2010).CrossRefGoogle Scholar
Pap, Z., Baia, L., Mogyorosi, K., Dombi, A., Oszko, A., and Danciu, V.: Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species. Catal. Commun. 17, 1 (2012).CrossRefGoogle Scholar
Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, Theory and Applications in Inorganic Chemistry, 6th ed. (John Wiley & Sons, Inc., Hoboken, NJ, 2008); pp. 281, 388, 391.CrossRefGoogle Scholar
Wang, J., Tafen, D.N., Lewis, J.P., Hong, Z.L., Manivannan, A., Zhi, M.J., Li, M., and Wu, N.Q.: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131(34), 12290 (2009).CrossRefGoogle ScholarPubMed