Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T22:13:10.207Z Has data issue: false hasContentIssue false

Preparation and photocatalytic performance of Ag/AgCl-modified cubic ZHS hollow particles

Published online by Cambridge University Press:  28 May 2014

Wenyan Wang
Affiliation:
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Yiming He
Affiliation:
Department of Materials Physics, Zhejiang Normal University, Jinhua 321004, China
Tinghua Wu*
Affiliation:
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Ying Wu*
Affiliation:
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

SnZn(OH)6 (ZHS) hollow cubes were synthesized by a facile self-templated method at room temperature, and Ag/AgCl/ZHS particles were prepared by a photodepositing method. The crystalline structure and morphology of the prepared particles were characterized by x-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, and N2 adsorption. The results indicated that the particles had almost uniform monoclinic geometry and size. The photocatalytic oxidation of Rhodamine B was used to evaluate the photocatalytic activity of the synthesized photocatalysts. It is found that the hollow Ag/AgCl/ZHS showed the highest catalytic performance under visible or UV light, which can be attributed to the synergetic effect of Ag, AgCl, and ZHS.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jena, H., Kutty, K.V.G., and Kutty, T.R.N.: Ionic transport and structural investigations on MSn(OH)6(M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods. Mater. Chem. Phys. 88, 167 (2004).Google Scholar
Christensen, A.N., Broch, N.C., Heidenstam, O., and Nilsson, A.: Hydrothermal investigation of the systems In2O3-H2O-Na2O and In2O3-D2O-Na2O. The crystal structure of rhombohedral In2O3 and of In(OH)3 . Acta Chem. Scand. 21, 1046 (1967).CrossRefGoogle Scholar
Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., and Keszler, D.A.: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).Google Scholar
Xu, J.Z., Zhang, C.Y., Qu, H.Q., and Tian, C.M.: Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride). J. Appl. Polym. Sci. 98, 1469 (2005).Google Scholar
Andre, F., Cusack, P.A., Monk, A.W., and Seangprasertkij, R.: The effect of zinc hydroxystannate and zinc stannate on the fire properties of polyester resins containing additive-type halogenated flame retardants. Polym. Degrad. Stab. 40, 267 (1993).Google Scholar
Hornsby, P.R., Winter, P., and Cusack, P.A.: Flame retardancy and smoke suppression of chlorosulphonated polyethylene containing inorganic tin compounds. Polym. Degrad. Stab. 44, 177 (1994).Google Scholar
Wang, W.W., Zhu, Y.J., and Yang, L.X.: ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater. 17(1), 59 (2007).Google Scholar
Wang, W.W. and Zhu, Y.J.: Synthesis of needle-like and flower-like zinc oxide by a simple surfactant-free solution method. Chem. Lett. 33, 988 (2004).CrossRefGoogle Scholar
Wang, W.Y., Ma, Z.W., Liang, R.J., Wu, T.H., and Wu, Y.: Synthesis and photocatalytic performance of SnZn(OH)6 with different morphologies. J. Mater. Res. 28(12), 1582 (2013).Google Scholar
Xu, J.Q., Liu, Y.L., and Niu, X.S.: Preparation and gas sensitivity of nanosized ZnSnO3 . J. Chin. Ceram. Soc. 30, 321 (2002).Google Scholar
Lu, Z.G. and Tang, Y.G.: Two-step synthesis and ethanol sensing properties of Zn2SnO4-SnO2 nanocomposites. Mater. Chem. Phys. 92, 5 (2005).Google Scholar
Wang, L.L., Tang, K.B., Liu, Z.P., Wang, D.K., Sheng, J., and Cheng, W.: Single-crystalline ZnSn(OH)6 hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties. J. Mater. Chem. 21, 4352 (2011).Google Scholar
Chen, Y.B., Li, D.Z., He, M., Hu, Y., Ruan, H., Lin, Y.M., Hu, J.H., Zheng, Y., and Shao, Y.: High photocatalytic performance of zinc hydroxystannate toward benzene and methyl orange. Appl. Catal., B 113114, 134 (2012).CrossRefGoogle Scholar
Wang, P., Huang, B.B., Zhang, Q.Q., Zhang, X.Y., Qin, X.Y., Dai, Y., Zhan, J., Yu, J.X., Liu, H.X., and Lou, Z.Z.: Highly efficient visible light plasmonic photocatalyst Ag/Ag(Br,I). Chem. Eur. J. 16, 10042 (2010).Google Scholar
Hu, C., Lan, Y.Q., Qu, J.H., Hu, X.X., and Wang, A.M.: Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J. Phys. Chem. B 110, 4066 (2006).Google Scholar
Kim, D., Jeong, Y., Song, K., Park, S.K., Cao, G.Z., and Moon, J.: Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 25(18), 11149 (2009).Google Scholar
Li, G.T., Wong, K.H., Zhang, X.W., Hu, C., Yu, J.C., Chan, R.C.Y., and Wong, P.K.: Degradation of acid orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 76, 1185 (2009).CrossRefGoogle ScholarPubMed
Cao, J., Xu, B.Y., Luo, B.D., Lin, H.L., and Chen, S.F.: Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2 . Appl. Surf. Sci. 257, 7083 (2011).CrossRefGoogle Scholar
Wang, Y.J., He, Y.M., Li, T.T., Cai, J., Luo, M.F., and Zhao, L.: Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chem. Eng. J. 189190, 473 (2012).Google Scholar
Fu, X.L., Leung, D.Y.C., Wang, X.X., Xue, W.W., and Fu, X.Z.: Photocatalytic reforming of ethanol to H2 and CH4 over ZnSn(OH)6 nanocubes. Int. J. Hydrogen Energy 36, 1524 (2011).Google Scholar
Wen, Y.Y. and Ding, H.M.: Preparation and photocatalytic activity of Ag@AgCl modified anatase TiO2 nanotubes. Chin. J. Catal. 32(1), 36 (2010).Google Scholar
Zhang, X.M., Chen, Y.L., Liu, R.S., and Tsai, D.P.: Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013).Google Scholar
Dong, L.Z., He, Y.M., Li, T.T., Cai, J., Hu, W.D., Wang, S.S., Lin, H.J., Luo, M.F., Yi, X.D., Zhao, L.H., Weng, W.Z., and Wan, H.L.: A comparative study on the photocatalytic activities of two visible-light plasmonic photocatalysts: AgCl-SmVO4 and AgI-SmVO4 composites. Appl. Catal., A 472, 143 (2014).Google Scholar
Li, T.T., He, Y.M., Lin, H.J., Cai, J., Dong, L.Z., Wang, X.X., Luo, M.F., Zhao, L.H., Yi, X.D., and Weng, W.Z.: Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4 . Appl. Catal., B 138139, 95 (2013).Google Scholar
Li, W.B., Hua, F.X., Yue, J.G., and Li, J.W.: Ag@AgCl plasmon-induced sensitized ZnO particle for high-efficiency photocatalytic property under visible light. Appl. Surf. Sci. 285P, 490 (2013).Google Scholar
Kawahara, K., Suzuki, K., Ohko, Y., and Tatsuma, T.: Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Phys. Chem. Chem. Phys. 7, 3851 (2005).CrossRefGoogle ScholarPubMed
Wang, P., Huang, B.B., Qin, X.Y., Zhang, X.Y., Dai, Y., Wei, J.Y., and Whangbo, M.H.: Ag/AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem., lnt. Ed. 120, 8049 (2008).Google Scholar
Chang, W.K., Rao, K.K., Kuo, H.C., Cai, J.F., and Wong, M.S.: A novel core–shell like composite In2O3 & CaIn2O4 for efficient degradation of methylene blue by visible light. Appl. Catal., A 321, 1 (2007).Google Scholar
Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).Google Scholar
Wang, D.F., Kako, T., and Ye, J.H.: Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc. 130(9), 2724 (2008).Google Scholar
Sawyer, D.T. and Valentine, J.S.: How super is superoxide? Acc. Chem. Res. 14, 393 (1981).Google Scholar
Tian, Y. and Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).Google Scholar
Wu, T.X., Liu, G.M., and Zhao, J.C.: Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102(30), 5845 (1998).Google Scholar
He, Y.M., Cai, J., Li, T.T., Wu, Y., Lin, H.J., Zhao, L.H., and Luo, M.F.: Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible light irradiation. Chem. Eng. J. 215216, 721 (2013).Google Scholar
He, Y.M., Cai, J., Li, T.T., Wu, Y., Yi, Y.M., Zhao, L.H., and Luo, M.F.: Synthesis, characterization, and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation. Ind. Eng. Chem. Res. 51(45), 14729 (2012).Google Scholar
Supplementary material: File

Wang Supplementary Material

Supplementary Material

Download Wang Supplementary Material(File)
File 159.2 KB
Supplementary material: Image

Wang Supplementary Material

Figure S1

Download Wang Supplementary Material(Image)
Image 127 KB
Supplementary material: Image

Wang Supplementary Material

Figure S2

Download Wang Supplementary Material(Image)
Image 2.8 MB