Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T23:28:52.406Z Has data issue: false hasContentIssue false

Preparation and magnetic properties of nanosized amorphous ternary Fe–Ni–Co alloy powders

Published online by Cambridge University Press:  31 January 2011

Kurikka V. P. M. Shafi
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Aharon Gedanken*
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
Ruslan Prozorov
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
Adam Revesz
Affiliation:
Department of General Physics, Lorand Eotvos University, H-1088, Budapest, Hungary
Janos Lendvai
Affiliation:
Department of General Physics, Lorand Eotvos University, H-1088, Budapest, Hungary
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

Nanosized amorphous alloy powders of Fe25Ni13Co62, Fe38Ni23Co39, Fe40,Ni24,Co36, and Fe69Ni9Co22 were prepared by sonochemical decomposition of solutions of volatile organic precursors, Fe(CO)5, Ni(CO)4, and Co(NO)(CO)3 in decalin, under an argon pressure of 100 to 150 kPa at 273 K. The amorphous nature of these particles was confirmed by various techniques, such as scanning electron microscopy, transmission electron microscopy, electron microdiffraction, and x-ray diffractograms. Magnetic measurements indicated that the as-prepared amorphous Fe–Ni–Co alloy particles were superparamagnetic. The observed magnetization measured up to a field of 1.5 kG of the annealed Fe–Ni–Co samples (75–87 emu g−1) was significantly lower than that for the reported multidomain bulk particles (175 emu g−1), reflecting the ultrafine nature of our sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anantharaman, T.R., Materials Science Surveys, No. 2: Metallic Glasses, edited by Anantharaman, T.R. (Trans Tech Publications, Rockport, MA, 1984).Google Scholar
2.Haasen, P. and Jaffe, R.I., Amorphous Metals and Semiconductors (Pergamon, London, 1986).Google Scholar
3.Motte, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar
4.Steeb, H. and Warlimont, H., Rapidly Quenched Metals (Elsevier, Amsterdam, 1985).Google Scholar
5.Egami, T., Report Prog. Phys. 47, 1601 (1984).CrossRefGoogle Scholar
6.Luborsky, F.E., in Ferromagnetic Materials, edited by Wohlfarth, E.P. (North-Holland, Amsterdam, 1980), Vol. 1, p. 474.Google Scholar
7.Heck, C., Magnetic Materials and Their Applications (Butterworths, London, 1974).Google Scholar
8.Chikazumi, S. and Graham, C.D., Magnetism and Metallurgy (Academic Press, New York, 1969).Google Scholar
9.Moronziski, M., Physics and Applications of Invar Alloys, Honda Memorial Series on Material Science Vol. 3 (Maruzen, Tokyo, 1978).Google Scholar
10.Connors, C. and Jacobs, S.F., J. Appl. Opt. 22, 1794 (1983).CrossRefGoogle Scholar
11.Ishio, S., Kobayashi, T., Sugawara, S., and Kadowaki, S., J. Magn. Mater. 164, 208 (1994).CrossRefGoogle Scholar
12.Miyazaki, T. and Oikawa, M., J. Mag. Magn. Mater. 97, 171 (1991).CrossRefGoogle Scholar
13.Miyazaki, T., Oomori, T., Sato, F., Ishio, S., and Oikawa, M., J. Magn. Magn. Mater. 129, L135 (1994).CrossRefGoogle Scholar
14.Achilleos, C.A., Kyprinidis, I.M., and Tsoukalas, I.A., Solid State Commun. 79, 209 (1991).CrossRefGoogle Scholar
15.Colling, D.A., J. Appl. Phys. 41, 1038 (1970).CrossRefGoogle Scholar
16.Suslick, K.S., Science 247, 1439 (1990).CrossRefGoogle Scholar
17.Flint, E.B. and Suslick, K.S., Science 253, 1397 (1991).CrossRefGoogle Scholar
18.Atchley, A.A. and Crum, L.A., in Ultrasound, Its Chemical, Physical and Biological Effect, edited by Suslick, K.S. (VCH, New York, 1988), pp. 164.Google Scholar
19.Greer, A.L., Science 267, 1947 (1995).CrossRefGoogle Scholar
20.Koltypin, Yu., Kataby, G., Cao, X., Prozorov, R., and Gedanken, A., J. Non-Cryst. Solids 201, 159 (1996).CrossRefGoogle Scholar
21.Shafi, K.V.P.M, Gedanken, A., Goldfarb, R.B., and Felner, I., J. Appl. Phys. 81, 6901 (1997).CrossRefGoogle Scholar
22.Shafi, K.V.P.M, Gedanken, A., and Prozorov, R., J. Mater. Chem. 8, 769 (1998).CrossRefGoogle Scholar
23.Cao, X., Prozorov, R., Koltypin, Yu., Kataby, G., Felner, I., and Gedanken, A., J. Mater. Res. 12, 402 (1997).CrossRefGoogle Scholar
24.Shafi, K.V.P.M, Koltypin, Yu., Gedanken, A., Prozorov, R., Balogh, J., Lendvai, J., and Felner, I., J. Phys. Chem. B. 101, 6409 (1997).CrossRefGoogle Scholar
25.Shafi, K.V.P.M, Prozorov, R., Balogh, J., and Gedanken, A., Chem. Mater. 10, 3445 (1998).CrossRefGoogle Scholar
26.Pannaparayil, T., Marande, R., Komerneni, S., and Sankar, S.G., J. Appl. Phys. 64, 5641 (1988).CrossRefGoogle Scholar
27.Jiang, X., Stevenson, S.A., Dumesic, J.A., Kelly, T.F., and Casper, R.J., J. Phys. Chem. 88, 6191 (1984).CrossRefGoogle Scholar
28.Moumen, N. and Pileni, M.P., J. Phys. Chem. 100, 1867 (1996).CrossRefGoogle Scholar
29.Suslick, K.S., Hyeon, T., and Fang, M., Chem. Mater. 8, 2172 (1996).CrossRefGoogle Scholar