Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T11:31:29.391Z Has data issue: false hasContentIssue false

Preparation and characterization of NH4Bi3F10

Published online by Cambridge University Press:  31 January 2011

D. Niznansky*
Affiliation:
E.H.I.C.S.-I.P.C.M.S., Groupe des Materiaux Inorganiques, 1, rue Blaise Pascal, 67 008 Strasbourg Cedex, France
J.L. Rehspringer
Affiliation:
E.H.I.C.S.-I.P.C.M.S., Groupe des Materiaux Inorganiques, 1, rue Blaise Pascal, 67 008 Strasbourg Cedex, France
*
a)Permanent address: Institute of Inorganic Chemistry, Rez near Prague, Czechoslovakia.
Get access

Abstract

A new NH4Bi3F10 compound was prepared, which results from a reaction between Bi2O3 and NH4F in an argon stationary atmosphere. It has a cubic fluorite-related structure isotypic with KBi3F10 with space group Fm3m (a = 11.974 Å). Further heating leads to decomposition to BiF3. IR spectra at different temperatures show the disappearance of NH4 group characteristic vibrations. Indexed x-ray diffraction pattern and IR spectra at different decomposition temperatures are given.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Réau, J. M., Rhandour, A., Matar, S., and Hagenmuller, P., J. Solid State Chem. 55, 7 (1984).CrossRefGoogle Scholar
2.Hagenmuller, P., Réau, J. M., Lucat, C., Matar, S., and Villeneuve, G., Solid State Ionics 3–4, 341 (1981).CrossRefGoogle Scholar
3.Rhandour, A., Réau, J. M., Matar, S., Tian, S. B., and Hagenmuller, P., Mater. Res. Bull. XX, 1309 (1985).CrossRefGoogle Scholar
4.Réau, J. M., Elomari, M., Senegas, J., and Hagenmuller, P., Mater. Res. Bull. XXIV, 1441 (1989).CrossRefGoogle Scholar
5.Réau, J. M., Matar, S., Villeneuve, G., and Soubeyroux, J. L., Solid State Ionics 9–10, 563 (1983).CrossRefGoogle Scholar
6.Réau, J. M., Bao, Tian Shun, Rhandour, A., Matar, S., and Hagenmuller, P., Solid State Ionics 15, 217 (1985).CrossRefGoogle Scholar
7.Matar, S., Réau, J. M., Lucat, C., Grannec, J., and Hagenmuller, P., Mater. Res. Bull. XV, 1295 (1980).CrossRefGoogle Scholar
8.Védrine, A., Boutonet, R., Sabatier, R., and Cousseins, J. C., Bull. Soc. Chim. Fr. 3–4, 445 (1975).Google Scholar
9.Aurivillius, B., Acta Chem. Scand. 9, 1206 (1955).CrossRefGoogle Scholar
10.Zachariasen, W. H., U. S. Atomic Energy Commission, Argonne National Laboratory Report ANL 4400, January 1950.Google Scholar
11.Ryss, I. G., Khimiya Ftora i Ego Neorganicheskich Soedinenii (Goskhimizdat, Moscow, 1956).Google Scholar
12.Kuhlmann, U., French Patent 1532 532, 1967.Google Scholar
13.Kuhlmann, U., French Patent 1564 519, 1967.Google Scholar
14.Kuhlmann, U., Supplement 93 537 to French Patent 1 532 532, 1969.Google Scholar
15.Rakov, E. G. and Melnichenko, E. I., Russ. Chem. Rev. 53 (9), 851 (1984).CrossRefGoogle Scholar
16.Charlot, G. and Bézier, D., Analyse Quantitative Minérale (Masson et C1E, Editeurs, Paris, 1955), p. 539.Google Scholar
17.Pierce, J. W. and Hong, H. Y. P., Proc. Rare Earth Res. Conf., 10th, edited by C. J. Kevane and T. Moeller (1973), pp. 527–537.Google Scholar
18.Dupuis, T. and Duval, C., C. R. Acad. Sci. Paris 229, 51 (1949).Google Scholar
19.Lehmann, W. J., J. Mol. Spectrosc. 7, 261 (1961).CrossRefGoogle Scholar
20.Bovey, L. F. H., J. Opt. Soc. Am. 41, 836 (1951).CrossRefGoogle Scholar
21.Narayanan, P. S., Proc. Indian Acad. Sci. A28, 469 (1948).CrossRefGoogle Scholar