Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T12:58:40.110Z Has data issue: false hasContentIssue false

Preparation and characterization of compounds in the BaBiO3–Ba(Ce1-xGdx)O3-x/2 system

Published online by Cambridge University Press:  26 July 2012

R. Mukundan
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104-6272
P. K. Davies
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104-6272
W. L. Worrell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104-6272
Get access

Extract

The structure, nonstoichiometry, and electrical conductivity of compositions in the BaBiO3– Ba(Ce1-xGdx)O3-x/2 system have been investigated in an attempt to prepare new mixed (ionic-electronic) conducting oxides. The substitution of Bi into Ba(Ce1-xGdx)O3-x/2 decreases the concentration of oxygen-ion vacancies, and the effective negative charge of the Gd dopant is compensated by the mixed valence of Bi (3+, 5+). For low Bi contents a decrease in ionic conductivity decreases the overall conductivity; however, higher levels of Bi introduce significant electronic conductivity, and for Ba(Bi0.5Ce0.5)O3, σtotal ≈ 1 S/cm at 800 °C in air. Compositions in the Ba(Bi0.5Ce0.5-xGdx)O3 pseudobinary system undergo a B-cation order-disorder transformation at 1300–1350 °C for x = 0.5 and at ≈1250 °C for x = 0.4; all other compositions retain a disordered B-site arrangement. While these disordered perovskites exhibit oxygen nonstoichiometry under reducing conditions at elevated temperatures, with the extent of reduction decreasing with increasing Gd content, their ordered counterparts remain close to stoichiometry. The electronic conductivities of this pseudobinary could be fitted to a “band-type” model, and, despite the presence of oxygen vacancies for the lower values of x, no significant ionic conductivity was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Solid State Ionics 3/4, 359 (1981).CrossRefGoogle Scholar
2.Taniguchi, N., Hatoh, K., Niikura, J., Gamo, T., and Iwahara, H., Solid State Ionics 53–56, 998 (1992).CrossRefGoogle Scholar
3.Bonanos, N., Ellis, B., Knight, K. S., and Mahmood, M. N., Solid State Ionics 35, 179 (1989).CrossRefGoogle Scholar
4.Iwahara, H., Solid State Ionics 28–30, 573 (1988).CrossRefGoogle Scholar
5.Harrison, W. T. A., Reis, K. P., Jacobson, A. J., Schneemeyer, L. T., and Waszczak, J. V., Chem. Mater. 7, 2161 (1995).CrossRefGoogle Scholar
6.Zhao, L. Z. and Zhang, J. B., Solid State Commun. 90 (11), 709 (1994).CrossRefGoogle Scholar
7.Mattheiss, L. F. and Hamann, D. R., Phys. Rev. B 28, 4227 (1983).CrossRefGoogle Scholar
8.Pei, S., Jorgensen, J. D., Dabrowski, B., Hinks, D. G., Richards, D. R., Mitchell, A. W., Newsam, J. M., Sinha, S.K., Vannin, D., and Jacobson, A. J., Phys. Rev. B 41, 4126 (1990).CrossRefGoogle Scholar
9.Cox, D. E. and Sleight, A. W., Solid State Commun. 19, 969 (1976).CrossRefGoogle Scholar
10.Cox, D. E. and Sleight, A. W., Acta Crystallogr. B35, 1 (1979).CrossRefGoogle Scholar
11.Beyerlein, R. A., Jacobson, A. J., and Yacullo, L. N., Mater. Res. Bull. 20, 877 (1985).CrossRefGoogle Scholar
12.Dissanayake, D., Kharas, K. C. C., Lunsford, J. H., and Rosynek, M. P., J. Catalysis 139, 652 (1993).CrossRefGoogle Scholar
13.Drost, R. J. and Fu, W. T., Mater. Res. Bull. 30 (4), 471 (1995).CrossRefGoogle Scholar
14.Janczak, J. and Kubiak, R., J. Less-Comm. Metals 166, 263 (1990).CrossRefGoogle Scholar
15.Mukundan, R., Ph.D. Thesis, University of Pennsylvania (1997), pp. 4873.Google Scholar
16.Beyerlein, R. A., Jacobson, A. J., and Poeppelmeir, K. R., J. Chem. Soc., Chem. Comm., 225 (1988).CrossRefGoogle Scholar
17.Becker, J. H. and Frederikse, H. P. R., J. Appl. Phys. Supplement 33 (1), 447 (1962).CrossRefGoogle Scholar
18.Rao, C.N.R and Raveau, B., Transition Metal Oxides (VCH Publishers Inc., New York, 1995), pp. 228232.Google Scholar
19.Lightfoot, P., Hriljac, J. A., Pei, S., Zheng, Y., Mitchell, A. W., Richards, D. R., Dabrowski, B., Jorgensen, J. D., and Hinks, D. G., J. Solid State Chemistry 92, 473 (1991).CrossRefGoogle Scholar