Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T00:39:14.219Z Has data issue: false hasContentIssue false

Preliminary investigation of a NiAl composite prepared by cryomilling

Published online by Cambridge University Press:  31 January 2011

J. Daniel Whittenberger
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
Eduard Arzt
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, Federal Republic of Germany
Michael J. Luton
Affiliation:
Exxon Research and Engineering, Annandale, New Jersey 08801
Get access

Abstract

An attempt has been made to improve the high temperature mechanical strength of the B2 cubic crystal structure intermetallic NiAl by dispersion strengthening. Prealloyed Ni–51 (at.%) Al was cryomilled with a Y2O3 addition to form an yttria dispersoid within the intermetallic matrix. Following milling, the powder was hot extruded to full density and machined into test coupons. Compression testing between 1200 and 1400 K indicated that the cryogenic process yielded the strongest NiAl based material tested to date: creep resistance was six times better than NiAl and twice that of a NiAl particulate composite containing 10 vol.% TiB2. Surprisingly, transmission electron microscopy revealed that the second phase was inhomogeneously distributed. Furthermore, x-ray analysis indicated that the second phase was not Y2O3 but rather AIN.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Whittenberger, J.D., J. Mat. Sci. 22, 394 (1987).Google Scholar
2Polvani, R.S., Tzeng, Wen-Shian, and Strutt, P. R., Metall. Trans. A 7A, 33 (1976).Google Scholar
3Vedula, K., Pathare, V., Aslandis, I., and Titran, R. H., High-Temperature Ordered Intermetallic Alloys, Proc. MRS, 39, 411421 (1985).Google Scholar
4Pathare, V. M., Ph.D. Thesis entitled “Processing, Physical Metallurgy and Creep of NiAl + Ta and NiAl + Nb Alloys,” Case Western Reserve University, 1987.Google Scholar
5Whittenberger, J. Daniel, Viswanadham, R. K., Mannan, S. K., and Kumar, S. K., “1200 to 1400 K Slow Strain Rate Compressive Properties of NiAl/Ni2AlTi-Base Materials,” High-Temperature Ordered Intermetallic Alloys III, Proc. Mater. Res. Soc. Symp., edited by Liu, C.T., Koch, C.C., Stoloff, N.S., and Taub, A.I., 131, 621626 (1989).Google Scholar
6Whittenberger, J. Daniel, Viswanadham, R. K., Mannan, S. K., and Kumar, S. K., J. Mater. Res. 4, 1164 (1989).CrossRefGoogle Scholar
7Viswanadham, R. K., Whittenberger, J. Daniel, Mannan, S. K., and Sprissler, B., High-Temperature/High Performance Composites, Proc. Mater. Res. Soc. Symp., edited by Lemkey, F. D., Evans, A.G., Fishman, S. G., and Strife, J. R., Pittsburgh, PA, 120, 9499 (1988).Google Scholar
8Whittenberger, J. Daniel, Viswanadhanr, R. K., Mannan, S. K., and Sprissler, B., J. Mat. Sci. (to be published).Google Scholar
9Locci, I. E., Noebe, R. D., Moser, J. A., Lee, D. S., and Nathal, M.V., “Microstructure, Properties and Processing of Melt Spun NiAl Alloys,” High-Temperature Ordered Intermetallic Alloys III, Proc. Mater. Res. Soc. Symp., edited by Liu, C.T., Koch, C.C., Stoloff, N.S., and Taub, A. I., 131, 639646 (1989).Google Scholar
10Jha, S.C., Ray, R., and Clemm, P., “Fine Grain Nickel-Aluminide Alloy with Improved Toughness Made via Rapid Solidification Technology,” final report for contract NAS3–25132, July 1987.Google Scholar
11Jha, S.C. and Ray, R., J. Mater Sci. Lett. 7, 285 (1988).CrossRefGoogle Scholar
12Jha, S.C., Ray, R., and Gaydosh, D. J., Scripta Metall. 23, 805 (1989).Google Scholar
13Whittenberger, J. Daniel, Gaydosh, D. J., and Kumar, K. S., “1300 K Compressive Properties of Several Dispersion Strengthened NiAl Materials,” J. Mater. Sci. (to be published).Google Scholar
14Jha, S.C., Whittenberger, J.D., and Ray, R., “Carbide Dispersion Strengthened B2 NiAl,” Mater. Sci. Engr. (to be published).Google Scholar
15Nordone, V. C. and Tien, J. K., Scripta Metall. 17, 467 (1983).Google Scholar
16Schroder, J. H. and Arzt, E., Scripta Metall. 19, 1129 (1985).Google Scholar
17Arzt, E., Res Mechanica (1989) (in press).Google Scholar
18Seybolt, A.U., Trans. ASM 59, 860 (1966).Google Scholar
19Benjamin, J. S., Metall. Trans. 1, 2943 (1970).Google Scholar
20Arzt, E. and Schultz, L., New Materials by Mechanical Alloying Techniques, Proc. Int. Conf. Hirsau 1988, DGM Informationgesellschaft, Oberursel, FRG, 1989.Google Scholar
21Vedula, K., Michal, G. M., and Figueredo, A. M., Modern Developments in Powder Metallurgy (American Powder Metallurgy Institute, Princeton, NJ, 1988), Vol. 20, pp. 491502.Google Scholar
22Luton, M. J., Jayanth, C. S., Disko, M.M., Matras, S., and Vallone, J., “Cryomilling of Nano-Phase Dispersion Strengthened Aluminum,” in Multicomponent Ultrafine Microstructures, Proc. Mater. Res. Soc. Symp. 132, 7986 (1989).Google Scholar
23Whittenberger, J. D., Mater. Sci. Eng. 57, 77 (1983).Google Scholar
24Whittenberger, J. D., Mater. Sci. Eng. 73, 87 (1985).Google Scholar
25Bradley, A. J. and Taylor, A., Proc. Roy. Soc. (London) 59, 56 (1937).Google Scholar
26Ridley, N., J. Inst. Metals 94, 255 (1966)Google Scholar
27Hughes, T., Lautenschlager, E. P., Cohen, J. B., and Brittain, J. O., JAP 42, 3705 (1971)Google Scholar
28Harmouche, M. R. and Wolfenden, A., JTEVA 15, 101 (1987)Google Scholar
29Whittenberger, J. D., J. Mater. Sci. 23, 235 (1988).CrossRefGoogle Scholar
30Whittenberger, J. D., Kumar, S. K., Mannan, S. K., and Viswanadham, R. K., “Slow Plastic Deformation of Extruded NiAl-10TiB2 Paniculate Composites at 1200 and 1300 K,” J. Mater. Sci. Lett, (to be published).Google Scholar
31Walter, J. L. and Cline, H. E., Metall. Trans. 1, 1221 (1970).CrossRefGoogle Scholar
32Nathal, M.V. and Ebert, L. J., Metall. Trans. A 16A, 1863 (1985).Google Scholar
33Raj, S.V. and M, G.. Pharr, Mater. Sci. Eng. 81, 217 (1986).Google Scholar