Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T23:33:10.876Z Has data issue: false hasContentIssue false

Preferred orientation and microstructure of Ni-Zn-Cu ferrite thin films deposited by rf magnetron sputtering

Published online by Cambridge University Press:  03 March 2011

Hae Seok Cho
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, 151-742, Seoul, Korea
Min Hong Kim
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, 151-742, Seoul, Korea
Hyeong Joon Kim
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, 151-742, Seoul, Korea
Get access

Abstract

We have investigated the effects of process parameters such as rf power, substrate, and gas pressure PAr on preferred orientation, microstructure, and magnetic properties of Ni-Zn-Cu ferrite thin films deposited by conventional rf magnetron sputtering. The texture structure was developed in the ferrite films deposited on the SiO2/Si(100) substrate at low rf power conditions. The ferrite film on the Si(111) substrate always had (111) texture irrespective of process parameters due to lattice matching, but the texture of the ferrite film on SiO2/Si(100) changed from (111) to (100) and finally returned to (111) orientation again with decreasing PAr. Such behavior would occur presumably due to the characteristic atomic stacking sequence corresponding to a given condition of the ion bombardment. The ferrite films deposited at low PAr had a denser microstructure consisting of tightly packed columnar grains with a smoother surface, better adhesion to the substrate, and better crystallinity than those at high PAr. Hc‖ of ferrite film deposited at low PAr was larger than that at high PAr and also larger than Hc⊥ of that deposited at the same PAr because larger compressive stress was induced at low PAr than at high PAr.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zaquine, I., Benasisi, H., and Mage, J. C., J. Appl. Phys. 64, 5822 (1988).CrossRefGoogle Scholar
2Ishino, K. and Narumiya, Y., Am. Ceram. Soc. Bull. 66, 1469 (1987).Google Scholar
3Zhang, Q., Itoh, T., Abe, M., and Tamaura, Y., in Ferrites, edited by Yamaguchi, T. and Abe, M. (Proceedings ICF-6, Tokyo, 1992), pp. 481484.Google Scholar
4Abe, M., Itoh, T., Tamaura, Y., and Gomi, M., J. Appl. Phys. 63, 3774 (1988).Google Scholar
5Itoh, T., Abe, M., Sasao, T., and Tamaura, Y., IEEE Trans. Magn. 25, 4230 (1989).Google Scholar
6Suran, G. and Heurtel, A., J. Appl. Phys. 43, 536 (1972).CrossRefGoogle Scholar
7Dillon, J. F., J. Appl. Phys. 41, 1348 (1970).Google Scholar
8Naoe, M. and Yamanaka, S., Jpn. J. Appl. Phys. 9, 293 (1970).CrossRefGoogle Scholar
9Marshall, D. J., J. Cryst. Growth 9, 305 (1971).Google Scholar
10Gibart, P., Robbins, M., and Kane, A. B., J. Cryst. Growth 24/25, 166 (1974).CrossRefGoogle Scholar
11Pulliam, G. R., Appl, J., Phys. 38, 1120 (1967).Google Scholar
12Mee, J. E., Pulliam, G. R., Archer, J. L., and Besser, P. J., IEEE Trans. Magn. 5, 717 (1969).Google Scholar
13Fitzerald, A. G. and Engin, R., Thin Solid Films 20, 317 (1974).Google Scholar
14Itoh, H., Takeda, T., and Naka, S., J. Mater. Sci. 21, 3677 (1986).Google Scholar
15Brook, R. J. and Kingery, W. D., J. Appl. Phys. 38, 3589 (1961).Google Scholar
16Kim, K. Y., Kim, W. S., and Ju, Y. D., New Physics 31 (Korea Physical Society), 639 (1991).Google Scholar
17Kong, S. S., Cho, H. S., Kim, H. J., and Kim, K. Y., J. Kor. Ceram. Soc. 29, 383 (1992).Google Scholar
18Perry, A. J. and Shoenes, J., Vacuum 36, 149 (1986).CrossRefGoogle Scholar
19Leamy, H. J., Gilmer, G. H., and Dirks, A. G., in Current Topics in Materials Science, edited by Kaldis, E. (Amsterdam, 1980), Vol. 6, pp. 309344.Google Scholar
20Thornton, J. A., J. Vac. Sci. Technol. A 4, 3059 (1986).Google Scholar
21Dirks, A. G., Wolters, R. A. M., and De Veirman, A. E. M., Thin Solid Films 208, 181 (1993).Google Scholar
22Thornton, J. A., Annu. Rev. Mater. Sci. 7, 239 (1977).Google Scholar
23Grovenor, C. R. M., Hentzell, H. T. G., and Smith, D. A., Acta Metall. 32, 773 (1984).CrossRefGoogle Scholar
24Hoffman, D. W. and Thornton, J. A., Thin Solid Films 40, 355 (1977).CrossRefGoogle Scholar
25Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol. 14, 164 (1977).Google Scholar
26Walton, D., Rhodin, T. N., and Rollins, R. W., J. Chem. Phys. 38, 2698 (1963).CrossRefGoogle Scholar
27Lee, D. N., J. Mater. Sci. 24, 4375 (1989).Google Scholar
28Dobrev, D., Thin Solid Films 92, 41 (1982).Google Scholar
29Harper, J. M. E. and Gambino, R. J., J. Vac. Sci. Technol. 16, 1901 (1979).Google Scholar
30Yu, L. S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., J. Vac. Sci. Technol. A 4, 443 (1986).CrossRefGoogle Scholar
31Bradley, R. M., Harper, J. M. E., and Smith, D. A., J. Appl. Phys. 60, 4160 (1986).CrossRefGoogle Scholar
32Window, B. and Harding, G. L., J. Vac. Sci. Technol. A 8, 1277 (1990).CrossRefGoogle Scholar
33Pelleg, J., Zevin, L. Z., and Lungo, S., Thin Solid Films 197, 117 (1991).CrossRefGoogle Scholar
34Lotgerling, F. K., J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
35Waits, R. K., in Thin Film Processes, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1978), Part II-4, p. 150.Google Scholar
36Rossnagel, S. M., J. Vac. Sci. Technol. A 7, 1025 (1989).Google Scholar
37Heyraud, J. C. and Metois, J. J., Surf. Sci. 177, 213 (1986).CrossRefGoogle Scholar
38Grantscharova, E. and Dobrev, D., Thin Solid Films 161, 213 (1988).CrossRefGoogle Scholar
39Shimizu, S. and Komiya, S., J. Vac. Sci. Technol. 18, 765 (1981).CrossRefGoogle Scholar
40Harper, J. M. E., Cuomo, J. J., Gambino, R. J., and Kaufman, H. R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), Chap. 4.Google Scholar
41Window, B., Sharpies, F., and Savvides, N., J. Vac. Sci. Technol. A 6, 2333 (1988).Google Scholar
42Doerner, M. F., Gardner, D. S., and Nix, W. D., J. Mater. Res. 1, 845 (1986).Google Scholar
43Greene, J. E., Barnett, S. A., Sundgren, J-E., and Rockett, A., in Ion Beam Assisted Film Growth, edited by Itoh, T. (Elsevier, Amsterdam, 1989), Chap. 5.Google Scholar
44Matsumoto, K., Nakagawa, S., and Naoe, M., in Advances in Ferrites, edited by Srivastava, C. M. and Patni, M. J. (Proceedings of ICF-5, Bombay, India, 1989), pp. 545549.Google Scholar
45Gambino, R. J., J. Appl. Phys. 38, 112 (1967).Google Scholar
46Benson, G. C. and Yun, K. S., in The Solid-Gas Interface, edited by Flood, E. A. (Marcel Dekker, New York, 1967), Chap. 8.Google Scholar
47Rohde, S. L., Kim, Y. K., and De Angelis, R. J., J. Electron. Mat. 22, 1327 (1993).Google Scholar
48Hultman, L., Münz, W. D., Musil, J., Kadlec, S., Petrov, I., and Greene, J. E., J. Vac. Sci. Technol. A 9, 434 (1991).CrossRefGoogle Scholar
49Hu, H. and Krupamdhi, S. B., Appl. Phys. Lett. 61, 1246 (1992).CrossRefGoogle Scholar
50DeWith, G. and Damen, J. P. M., J. Mater. Sci. Lett. 16, 838 (1981).Google Scholar
51van der Drift, A., Philips Res. Rep. 22, 267 (1967).Google Scholar
52Mazor, A., Bukoet, B. G., and Srolovitz, D. J., J. Vac. Sci. Technol. 29, 131 (1986).Google Scholar
53Vink, T. J., Somers, M. A. J., Daams, J. L. C., and Dirks, A. G., J. Appl. Phys. 70, 195 (1978).Google Scholar
54Bozorth, R. M., Tilden, E. F, and Sharman, A. J., J. Electrochem. Soc. 113, 86 (1966).Google Scholar
55Sosman, R. B., The Properties of Silica (Reinhold, New York, 1927), p. 362.Google Scholar
56Goldman, A., Modern Ferrite Technology (Reinhold, New York, 1990), Chap. 3.Google Scholar