Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:18:27.374Z Has data issue: false hasContentIssue false

Precursors of amorphization in supersaturated Nb-Pd solid solutions

Published online by Cambridge University Press:  03 March 2011

C.E. Krill III*
Affiliation:
W.M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
J. Li
Affiliation:
W.M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
C.M. Garland
Affiliation:
W.M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
C. Ettl
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
K. Samwer
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
W.B. Yelon
Affiliation:
University of Missouri Research Reactor, Columbia, Missouri 65211
W.L. Johnson
Affiliation:
W.M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
*
a)Present address: Universität des Saarlandes, FB 15 Werkstoff-wissenschaften, Postfach 151150, Gebäude 43, D-66041 Saarbrücken, Germany.
Get access

Abstract

The possibility that crystal-to-amorphous phase transformations can be induced by one or more underlying instabilities of the crystalline phase has been investigated in highly supersaturated solid solutions of Nb-Pd. Several unusual properties were discovered that may be identified as precursor effects of the collapse of the bcc α-Nb terminal solution to the amorphous phase. Elastic neutron diffraction measurements of α-Nb solutions found, with increasing Pd concentration, an anomalously large increase of the average atomic root-mean-square displacement to about half of the value at which the Lindemann criterion predicts the lattice should melt. Low-temperature heat capacity measurements yielded a concomitant decrease in the Debye temperature, suggesting that supersaturation causes an elastic modulus to soften. Single crystals of α-Nb solutions at high supersaturations have a highly anisotropic structure that is visible in transmission electron microscopy images; it is consistent with the development of a soft phonon mode leading to a bcc-to-ω phase transformation. Considered together with the results of other recent experiments, these findings suggest that shear instability of the crystalline phase plays an important role in the crystal-to-amorphous transformation and that the average static mean-square displacement of atoms in the lattice acts as a useful parameter for the stability of the crystal with respect to amorphization.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2Yeh, X. L. and Johnson, W. L., in Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties, edited by Giessen, B. C., Polk, D. E., and Taub, A. I. (Mater. Res. Soc. Symp. Proc. 58, Pittsburgh, PA, 1986), p. 63.Google Scholar
3Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F., and Kluge, M., J. Mater. Res. 5, 286 (1990).Google Scholar
4Okamoto, P. R., Rehn, L. E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Common Met. 140, 231 (1988).Google Scholar
5Seidel, A., Massing, S., Strehlau, B., and Linker, G., Phys. Rev. B 38, 2273 (1988).CrossRefGoogle Scholar
6Fecht, H. J. and Johnson, W. L., Nature (London) 334, 50 (1988).Google Scholar
7Kauzmann, W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
8Fecht, H. J., Desré, P.J., and Johnson, W.L., Philos. Mag. B 59, 577 (1989).CrossRefGoogle Scholar
9Krill, C. E. III and Johnson, W. L., in Kinetics of Phase Transformations, edited by Thompson, M. O., Aziz, M. J., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1992), pp. 313318.Google Scholar
10Van der Kolk, G. J., Minemura, T., and Van den Broek, J. J., J. Mater. Sci. 24, 1895 (1989).Google Scholar
11Krill, C.E. III, Ph. D. Thesis, California Institute of Technology, 1992.Google Scholar
12Hwang, S., SURF research report, California Institute of Technology, 1990 (unpublished).Google Scholar
13Krill, C.E. III, Li, J., Ettl, C., Samwer, K., Yelon, W. B., and Johnson, W. L., J. Non-Cryst. Solids 156–158, 506 (1993).CrossRefGoogle Scholar
14Klingel, M., Ph. D. Thesis, Universitat des Saarlandes, 1992.Google Scholar
15Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
16Larson, A. C. and Von Dreele, R. B., GSAS: General Structure Analysis System (Los Alamos National Laboratory, Los Alamos, NM, 1990).Google Scholar
17Ettl, C. and Samwer, K., J. Non-Cryst. Solids 156–158, 502 (1993).CrossRefGoogle Scholar
18Ettl, C., Ph. D. Thesis, Universitat Augsburg, 1993.Google Scholar
19Bachmann, R., DiSalvo, F. J. Jr., Geballe, T. H., Greene, R. L., Howard, R. E., King, C. N., Kirsch, H. C., Lee, K. N., Schwall, R. E., Thomas, H-U., and Zubeck, R.B., Rev. Sci. Instrum. 43, 205 (1972).Google Scholar
20Fagaly, R. L. and Bohn, R. G., Rev. Sci. Instrum. 48, 1502 (1977).CrossRefGoogle Scholar
21CRC Handbook of Metal Etchants, edited by Walker, P. and Tarn, W. H. (CRC Press, Boca Raton, FL, 1991), pp. 879884.Google Scholar
22Vegard, L., Z. Phys. 5, 17 (1921); Z. Cryst. 67, 239 (1928).Google Scholar
23Pearson, W. B., The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972), pp. 174179.Google Scholar
24Warren, B. E., X-ray Diffraction (Dover, New York, 1990), pp. 3538.Google Scholar
25Lovesey, S. W., Theory of Neutron Scattering from Condensed Matter (Oxford University Press, Oxford, 1984), pp. 107114.Google Scholar
26Blackman, M., Acta Cryst. 9, 734 (1956).CrossRefGoogle Scholar
27Hewat, A. W., J. Phys. C 5, 1309 (1972).CrossRefGoogle Scholar
28Warren, B. E., X-ray Diffraction (Dover, New York, 1990), pp. 190192.Google Scholar
29Equation (4) was obtained by assuming that the temperature dependent part of (μ2)tot may be represented by (μ2)dyn as given in Eq. (10) and differentiating with respect to temperature.Google Scholar
30Kittel, C., Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 139.Google Scholar
31Kittel, C., Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), Chap. 5.Google Scholar
32Technically, this formula for A is derived from the lowtemperature expression for C:v rather than CP, but CP — Cv → 0 as T → 0 K because CP — Cv = 9ɑ2LBVT, where B is the bulk modulus.63Google Scholar
33Sass, S. L., Acta Metall. 17, 813 (1969).Google Scholar
34Sikka, S. K., Vohra, Y. K., and Chidambaram, R., Prog. Mater. Sci. 27, 245 (1982).CrossRefGoogle Scholar
35Sass, S. L., J. Less-Common Met. 28, 157 (1972).Google Scholar
36Luzzi, D. E., J. Mater. Res. 6, 2059 (1991).Google Scholar
37Krivoglaz, M. A., Theory of X-Ray and Thermal-Neutron Scattering by Real Crystals (Plenum, New York, 1969), p. 223.Google Scholar
38Actually, the θD that appears in Eq. (10) is not quite the same Debye temperature as that used to model the low-temperature heat capacity of solids. This is due to the fact that the average over the phonon frequency spectrum made by the Debye model for atomic displacements is not the same as that made by the Debye model for low-temperature heat capacity.64 The difference between the θDn's derived from the two models, however, is ordinarily not very large.28Google Scholar
39Dernier, P. D., Weber, W., and Longinotti, L. D., Phys. Rev. B 14, 3635 (1976).CrossRefGoogle Scholar
40Voronel, A., Rabinovich, S., Kisliuk, A., Steinberg, V., and Sverbilova, T., Phys. Rev. Lett. 60, 2402 (1988).CrossRefGoogle Scholar
41Rabinovich, S., Voronel, A., and Peretzman, L., J. Phys. C 21, 5943 (1988).CrossRefGoogle Scholar
42Huang, K., Proc. R. Soc. London, Ser. A 190, 102 (1947).Google Scholar
43Borie, B., Acta Crystallogr. 10, 89 (1957).CrossRefGoogle Scholar
44Krivoglaz, M. A., Theory of X-Ray and Thermal-Neutron Scattering by Real Crystals (Plenum, New York, 1969), p. 234.Google Scholar
45Sirdeshmukh, D. B. and Srinivas, K., J. Mater. Sci. 21, 4117 (1986).CrossRefGoogle Scholar
46Herbstein, F. H., Borie, B. S. Jr., and Averbach, B. L., Acta Crystallogr. 9, 466 (1956).CrossRefGoogle Scholar
47Shirley, C. G. and Fisher, R. M., Philos. Mag. A 39, 91 (1979).Google Scholar
48Mohanlal, S. K. and Padiyan, D. P., Cryst. Latt. Defects Amorph. Mater. 14, 23 (1987).Google Scholar
49Mohanlal, S. K. and Padiyan, D. P., Radiat. Eff. Defects Solids 110, 385 (1989).CrossRefGoogle Scholar
50Baram, J. and Zevin, L., Scripta Metall. Mater. 24, 1605 (1990).Google Scholar
51Lindemann, F. A., Z. Phys. 11, 609 (1910).Google Scholar
52Cho, S-A., J. Phys. F 12, 1069 (1982).CrossRefGoogle Scholar
53Rabinovich, S., Berrebi, D., and Voronel, A., J. Phys.–Condens. Matter 1, 6881 (1989).CrossRefGoogle Scholar
54Lam, N. Q., Okamoto, P. R., Sabochick, M. J., and Devanathan, R., J. Alloys Compounds 194, 429 (1993).Google Scholar
55Battezzati, L., Philos. Mag. B 61, 511 (1990).CrossRefGoogle Scholar
56Devanathan, R., Lam, N. Q., Okamoto, P. R., and Meshii, M., in Materials Theory and Modeling, edited by Broughton, J., Bristowe, P. D., and Newsam, J. M. (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), pp. 653658).Google Scholar
57Devanathan, R., Lam, N. Q., Okamoto, P. R., and Meshii, M., Phys. Rev. B 48, 42 (1993).CrossRefGoogle Scholar
58Lam, N. Q. and Okamoto, P. R., Surf. Coatings Tech. (to be published).Google Scholar
59Chevrier, J., Suck, J-B., and Lasjaunias, J. C., J. Non-Cryst. Solids 156–158, 564 (1993).Google Scholar
60Li, M. and Johnson, W. L., Phys. Rev. Lett. 70, 1120 (1993).Google Scholar
61Johnson, W. L., Li, M., and Krill, C. E. III, J. Non-Cryst. Solids 156–158, 481 (1993).CrossRefGoogle Scholar
62Delaey, L., in Phase Transformations in Materials, edited by Cahn, R. W., Haasen, P., and Kramer, E. J., Materials Science and Technology: A Comprehensive Treatment, Vol. 5 (VCH, New York, 1991), pp. 339404.Google Scholar
63Swalin, R. A., Thermodynamics of Solids, 2nd ed. (Wiley, New York, 1972), p. 31.Google Scholar
64Batterman, B. W. and Chipman, D. R., Phys. Rev. 127, 690 (1962).CrossRefGoogle Scholar
65Chandrasekharaiah, M. S., Bull. Alloy Phase Diagrams 9, 449 (1988).CrossRefGoogle Scholar
66Binary Alloy Phase Diagrams, Vol. 3, edited by Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L. (ASM INTERNATIONAL, Materials Park, OH, 1990), pp. 27512753.Google Scholar