Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T13:10:23.703Z Has data issue: false hasContentIssue false

Precision measurements of the effect of implanted boron on silicon solid phase epitaxial regrowth

Published online by Cambridge University Press:  31 January 2011

Won Woo Park
Affiliation:
143 Engineering Science Building, Electrical and Computer Engineering Department, University of Texas, Austin, Texas 78712
M. F. Becker
Affiliation:
143 Engineering Science Building, Electrical and Computer Engineering Department and Materials Science and Engineering, University of Texas, Austin, Texas 78712
R. M. Walser*
Affiliation:
143 Engineering Science Building, Electrical and Computer Engineering Department and Materials Science and Engineering, University of Texas, Austin, Texas 78712
*
a)J. H. Herring Centennial Professor in Engineering.
Get access

Abstract

The epitaxial recrystallization rates of self-ion amorphitized layers in silicon wafers with 〈100〉 substrate orientation were measured by in situ, high precision, isothermal cw laser interferometry. With this one-sample technique the changes produced by implanted boron impurity concentrations (NB) in the activation energy Ea and preexponential V0 of solid phase epitaxy were measured for concentrations in the range 5 × 1018 cm−3 < NB < 3 × 1020 cm−3 and for temperatures from 450 to 550°C. The differential changes in Ea produced were measured to within ± 23 meV when systematic errors were eliminated. Changes in activation energy and entropy [Ea and log (V0)] were found to be linearly correlated for all concentrations. This observation is consistent with the idea that electronically active impurities alter regrowth velocities by reducing the critical temperature for disordering at some of the interfacial sites at which elementary reconstructive processes are driven by thermal fluctuations. For small Nn, the critical temperature of the impurity-modified reconstruction is estimated at 1200K, approximately 200 K below the melting temperature of amorphous silicon. The Ea decreased exponentially with NB to a concentration Ninfl, larger than the estimated equilibrium solubility limit, where there was an inflection point in the V vs NB curve. The Ea increased for values of NB larger than Ninfl, showing that the differential increase in V for higher concentrations was due to a differential increase in the activation entropy. A change in the correlation between Ea and log (V0) at Ninfl indicated that larger NB produced an additional reduction of the critical temperature of the reconstruction. For small NB, the data support a simple Fermi level shifting model for the “electronic effect” of impurities on SPE (solid phase epitaxial) regrowth.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Csepregi, L., Mayer, J. W., and Sigmon, T. W., Phys. Lett. A 54, 157 (1975).CrossRefGoogle Scholar
2Lietoila, A., Wakita, A., Sigmon, T. W., and Gibbons, J. F., J. Appl. Phys. 53, 4399 (1982).CrossRefGoogle Scholar
3Drosd, R. and Washburn, J., J. Appl. Phys. 51, 4106 (1980).CrossRefGoogle Scholar
4Moritani, A. and Hamaguchi, C., Appl. Phys. Lett. 46, 746 (1985).CrossRefGoogle Scholar
5Kokorowski, S. A., Olson, G. L., and Hess, L. D., J. Appl. Phys. 53, 921 (1982).CrossRefGoogle Scholar
6Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
7Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
8Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).CrossRefGoogle Scholar
9Suni, I., Goltz, G., Grimaldi, M. G., Nicolet, M-A., and Lau, S. S., Appl. Phys. Lett. 40, 269 (1982).CrossRefGoogle Scholar
10Suni, I., Shreter, U., Nicolet, M-A., and Baker, J. E., J. Appl. Phys. 56, 273 (1984).CrossRefGoogle Scholar
11Campisano, S. U. and Chang, C. T., Appl. Phys. A 31, 157 (1983).CrossRefGoogle Scholar
12Campisano, S. U. and Barbarino, A. E., Appl. Phys. A 25, 153 (1981).CrossRefGoogle Scholar
13Campisano, S. U., Gibson, J. M., and Poate, J. M., Appl. Phys. Lett. 46, 580 (1985).CrossRefGoogle Scholar
14Drosd, R. and Washburn, J., J. Appl. Phys. 53, 397 (1982).CrossRefGoogle Scholar
15Narayan, J., J. Appl. Phys. 53, 8607 (1982).CrossRefGoogle Scholar
16Spaepen, F. and Turnbull, D., AIP Conf. Proc. 50, 73 (1979).CrossRefGoogle Scholar
17Suni, I., Goltz, G., Grimaldi, M. G., Nicolet, M-A., and Lau, S. S., Thin Solid Films 93, 171 (1982).CrossRefGoogle Scholar
18Campisano, S. U., Appl. Phys. A 29, 147 (1982).CrossRefGoogle Scholar
19Williams, J. S. and Elliman, R. G., Phys. Rev. Lett. 51, 1069 (1983).CrossRefGoogle Scholar
20Moseley, L. E. and Paesler, M. A., Appl. Phys. Lett. 45, 86 (1984).CrossRefGoogle Scholar
21Olson, G. L., Roth, J. A., Hess, L. D., and Narayan, J., in the Proceedings of the 1983 Materials Research Society Symposium on Energy Beam-Solid Interactions and Transient Thermal Processing (Elsevier, New York, 1983).Google Scholar
22Vechten, J. A. Van and Thurmond, C. D., Phys. Rev. B 14, 3539 (1976).CrossRefGoogle Scholar
23Hofker, W. K., Oosthoek, D. P., Oeman, N. J. K., and Grefte, H. A. M. De, Radiat. Eff. 24, 223 (1975).CrossRefGoogle Scholar
24Algazier, Y. B., Blyumkina, Y. A., Grebnev, N. I., Suitashev, K. K., Semenko, L. V., and Yablontseva, T. M., Opt. Spectrosc. (USSR) 45(2), 183 (1978).Google Scholar
25Hooper, M. A., J. Electrochem. Soc. 122, 1216 (1975).CrossRefGoogle Scholar
26Olson, G. L., Kokorowski, S. A., McFarlane, R. A., and Hess, L. D., Appl. Phys. Lett. 37, 1019 (1980).CrossRefGoogle Scholar
27Park, W. W., Becker, M. F., and Walser, R. M., submitted to Appl. Phys. Lett.Google Scholar
28Jeon, Y. J., Park, W. W., Becker, M. F., and Walser, R. M. (to be published).Google Scholar
29Olson, G. L., Roth, J. A., Hess, L. D., and Narayan, J., in Layered Structures and Interface Kinetics, edited by Furukawa, S. (KTK Scientific, Tokyo, 1985), p. 73.Google Scholar
30Hesse, J., Z. Metallkde. 59, 499 (1968).Google Scholar
31Mott, N. F., Proc. Phys. Soc. London 60, 391 (1948).CrossRefGoogle Scholar
32Dienes, G. J., J. Appl. Phys. 21, 1189 (1950).CrossRefGoogle Scholar
33Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., J. Appl. Phys. 57, 1795 (1985).CrossRefGoogle Scholar
34Olson, G. L., Mater. Res. Soc. Symp. Proc. 35, 25 (1985).Google Scholar