Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T00:43:37.091Z Has data issue: false hasContentIssue false

Precipitation of carbon nanoparticles encapsulating silicon carbide from molten oxide

Published online by Cambridge University Press:  31 January 2011

Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba-shi, Ibaraki 305, Japan
Chong-Min Wang
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Hideyuki Emoto
Affiliation:
Research Center, Denki Kagaku Kogyo K. K., Machida, Tokyo 194, Japan
Get access

Abstract

A kind of fullerenes, carbon nanoparticle encapsulating β–SiC grain, was precipitated during cooling Al2O3–Y2O3 –CaO oxide melt containing SiC and C from 2023 K. The SiC grains with a diameter of 5–20 nm were covered with 2–4 graphitic carbon layers with the spacing of 0.34 nm as revealed by high resolution transmission electron microscopy. The result provides a new preparation method of carbon nanoparticles through a ceramic process, which contrasts with previous physical methods applying electric arc discharge or electron irradiation in vacuum.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H. W., Heath, J. R., O'Brain, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
2.Nolan, P. E., Lynch, D. C., and Cutler, A. H., Carbon 32, 477 (1994).CrossRefGoogle Scholar
3.Ugarte, D., Chem. Phys. Lett. 198, 596 (1992).CrossRefGoogle Scholar
4.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., and Hayashi, T., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
5.Ugarte, D., Nature (London) 359, 707 (1992).CrossRefGoogle Scholar
6.Rouff, R. S., Lorents, D. C., Chan, B., Malhotva, R., and Subramoney, S., Science 259, 346 (1993).CrossRefGoogle Scholar
7.Tomita, M., Saito, Y., and Hayashi, T., Jpn. J. Appl. Phys. 32, L280 (1993).CrossRefGoogle Scholar
8.Saito, Y., Carbon 33, 979 (1995).CrossRefGoogle Scholar
9.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
10.Ajayan, P. M. and Iijima, s., Nature (London) 361, 333 (1993).CrossRefGoogle Scholar
11.Ruoff, R. S. and Larents, D. C., Carbon 33, 925 (1995).CrossRefGoogle Scholar
12.Wang, C. M., Mitomo, M., and Emoto, H., J. Mater. Res. 12, 3266 (1997).CrossRefGoogle Scholar
13.Mitomo, M., Kim, Y. W., and Hirotsuru, H., J. Mater. Res. 11, 1601 (1996).CrossRefGoogle Scholar
14.Nolan, P. E., Lynch, D. C., and Cutler, A. H., Carbon 34, 817 (1996).CrossRefGoogle Scholar
15.Renlund, G. M., Prochazka, S., and Doremus, R. H., J. Mater. Res. 6, 2723 (1991).CrossRefGoogle Scholar
16.Ugarte, D., MRS Bull. 19, 39 (1994).CrossRefGoogle Scholar