Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T16:06:38.025Z Has data issue: false hasContentIssue false

Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses

Published online by Cambridge University Press:  02 August 2012

Roman Golovchak*
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania18015-3195
Shaojie Wang
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania18015-3195
Himanshu Jain
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania18015-3195
Adam Ingram
Affiliation:
Department of Physics of Opole University of Technology, Opole, PL-45370, Poland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Positron annihilation lifetime measurements are performed for sol–gel-derived 70 mol% SiO2–30 mol% CaO bioactive glass. Strong positronium formation processes are shown to be an inherent feature for these kinds of materials. Observed orthopositronium (o-Ps) lifetimes show a three-modal distribution with lifetime values weighed at ∼2, ∼18, and ∼70 ns. The exposure of the investigated sol–gel-derived bioactive glasses to water vapor significantly modifies o-Ps lifetime distribution due to the penetration of water molecules into the nanopores, indicating high ratio of their interconnectivity. Classic Tao–Eldrup equation is used to relate the o-Ps lifetimes with the size of nanopores, whose distribution is verified by nitrogen adsorption porosimetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, R., Clark, A.E., and Hench, L.L.: An investigation of bioactive glass powders by sol-gel processing. J. Appl. Biomater. 2, 231 (1991).CrossRefGoogle ScholarPubMed
Jones, J.R., Tsigkou, O., Coates, E.E., Stevens, M.M., Polak, J.M., and Hench, L.L.: Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28, 1653 (2007).CrossRefGoogle ScholarPubMed
Marques, A.C., Almeida, R., Thiema, A., Wang, S., Falk, M.M., and Jain, H.: Sol-gel-derived glass scaffold with high pore interconnectivity and enhanced bioactivity. J. Mater. Res. 24, 3495 (2009).CrossRefGoogle Scholar
Wang, S., Falk, M.M., Rashad, A., Saad, M.M., Marques, A.C., Almeida, R.M., Marei, M.K., and Jain, H.: Evaluation of 3D nano/macroporous bioactive glass scaffold for hard tissue engineering. J. Mater. Sci. - Mater. Med. 22, 1195 (2011).CrossRefGoogle Scholar
Sepulveda, P., Jones, J.R., and Hench, L.L.: Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340 (2002).CrossRefGoogle ScholarPubMed
Zhang, D., Jain, H., Hupa, M., and Hupa, L.: In vitro degradation and bioactivity of tailored amorphous multi porous (TAMP) scaffold structure. J. Am. Ceram. Soc. (2012, in press).Google Scholar
Karageorgiou, V. and Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474 (2005).CrossRefGoogle ScholarPubMed
Nakanishi, K.: Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67 (1997).CrossRefGoogle Scholar
Yachi, A., Takahashi, R., Sato, S., Sodesawa, T., Oguma, K., Matsutani, K., and Mikami, N.: Silica gel with continuous macropores prepared from water glass in the presence of poly(acrylic acid). J. Non-Cryst. Solids 351, 331 (2005).CrossRefGoogle Scholar
Jones, J.R., Ehrenfried, L.M., and Hench, L.L.: Optimizing bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964 (2006).CrossRefGoogle Scholar
Maekawa, H., Esquena, J., Bishop, S., Solans, C., and Chmelka, B.F.: Meso/macroporous inorganic oxide monoliths from polymer, foams. Adv. Mater. 15, 591 (2003).CrossRefGoogle Scholar
Liang, W. and Russel, C.: Porous glass scaffolds by a salt sintering process. J. Mater. Sci. 41, 3787 (2006).CrossRefGoogle Scholar
Moawad, H.M. and Jain, H.: Fabrication ofnano/macro porous glass-ceramic bioscaffold with a water-soluble pore former. J. Mater. Sci. - Mater. Med. 23, 307 (2012).CrossRefGoogle Scholar
Yun, H., Kim, S., and Hyeon, Y.: Design and preparation of bioactive glasses with hierarchical pore networks. Chem. Commun. 21, 2139 (2007).CrossRefGoogle Scholar
Marques, A.C., Jain, H., and Almeida, R.M.: Sol-gel derived nano/macroporous scaffolds. Phys. Chem. Glasses-Eur. J. Glass Sci. Technol., Part B 48, 65 (2007).Google Scholar
Webb, P.A. and Orr, C.: Analytical Methods in Fine Particle Technology (Micromeritics Instrument Corporation, Norcross, 1997).Google Scholar
Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
Rice, R.W.: Evaluation of extension of physical property-porosity models based on minimum solid area. J. Mater. Sci. 31, 102 (1996).CrossRefGoogle Scholar
Ondracek, G.: Human, medicine and materials: Biomaterials. Keram. Z. 40, 169 (1988).Google Scholar
Krause-Rehberg, R. and Leipner, H.: Positron Annihilation in Semiconductors (Springer, Heidelberg, 1999).CrossRefGoogle Scholar
Jean, Y.C., Mallon, P.E., and Schrader, D.M.: Principles and Application of Positron and Positronium Chemistry (World Scientific, Singapore, 2003).CrossRefGoogle Scholar
Mogensen, O.E.: Positron Annihilation in Chemistry (Springer, Berlin, 1995).CrossRefGoogle Scholar
Nakanishi, H., Jean, Y.C., Schrader, D.M., and Jean, Y.C.: In Positron and Positronium Chemistry (Elsevier, Amsterdam, 1998).Google Scholar
Dlubek, G., Sen Gupta, A., Pionteck, J., Hassler, R., Krause-Rehberg, R., Kaspar, H., and Lochhaas, K.H.: High-pressure dependence of the free volume in fluoroelastomers from positron lifetime and PVT experiments. Polymer 46, 6075 (2005).CrossRefGoogle Scholar
Shpotyuk, O. and Filipecki, J.: Free volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study (WWSzP, Czestochowa, 2003). ISBN 83-7098-984-5.Google Scholar
Vueva, Y., Gama, A., Teixeira, A.V., Almeida, R.M., Wang, S., Falk, M.M., and Jain, H.: Monolithic glass scaffolds with dual porosity prepared by polymer-induced phase separation and sol–gel. J. Am. Ceram. Soc. 93, 1945 (2010).CrossRefGoogle Scholar
Kansy, J.: Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A 374, 235 (1996).CrossRefGoogle Scholar
Tao, S.J.: Positronium annihilation in molecular substance. J. Chem. Phys. 56, 5499 (1972).CrossRefGoogle Scholar
Eldrup, M., Lightbody, D., and Sherwood, J.N.: The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 63, 51 (1981).CrossRefGoogle Scholar
Goworek, T., Ciesieslski, K., Jasinska, B., and Wawryszczuk, J.: Positronium states in the pores of silica gel. Chem. Phys. 230, 305 (1998).CrossRefGoogle Scholar
Djourelov, N., Suzuki, T., Shantarovich, V., and Kondo, K.: Positronium formation in sol-gel-prepared silica-based glasses: Temperature and positron-irradiation effect. Radiat. Phys. Chem. 72, 723 (2005).CrossRefGoogle Scholar
Misheva, M., Djourelov, N., Margaca, F.M.A., and Miranda Salvado, I.M.: Positronium decay of zirconia-silica sol-gels. J. Non-Cryst. Solids 272, 209 (2000).CrossRefGoogle Scholar
Klym, H., Ingram, A., Shpotyuk, O., Filipecki, J., and Hadzaman, I.: Extended positron-trapping defects in insulating MgAl2O4 spinel-type ceramics. Phys. Status Solidi C 4, 715 (2007).CrossRefGoogle Scholar
Dutta, D., Chatterjee, S., Pujari, K.T., and Ganguly, B.N.: Pore structure of silica gel: A comparative study through BET and PALS. Chem. Phys. 312, 319 (2005).CrossRefGoogle Scholar
Gidley, D.W., Frieze, W.E., Dull, T.L., Yee, A.F., Ryen, E.T., and Ho, H-M.: Positronium annihilation in mesoporous thin films. Phys. Rev. B 60, R5157 (1999).CrossRefGoogle Scholar
Varshneya, A.K.: Fundamentals of Inorganic Glasses, 2nd ed. (Society of Glass Technology, Sheffield, UK, 2006).Google Scholar
Marques, A.C., Jain, H., Kiely, C., Song, K., Kiely, C.J., and Almeida, R.M.: Nano/macroporous monolithic scaffolds prepared by the sol–gel method. J. Sol-Gel Sci. Technol. 51, 42 (2009).CrossRefGoogle Scholar
Hench, L.L. and West, J.K.: The sol-gel process. Chem. Rev. 90, 33 (1990).CrossRefGoogle Scholar
Magalhaes, W.F., Abbe, J.C., and Duplatre, G.: Solvent and temperature effects on positronium annihilation parameters and on its quenching reactions with the free radical HTEMPO. Struct. Chem. 2, 399 (1991).CrossRefGoogle Scholar