Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T01:37:41.437Z Has data issue: false hasContentIssue false

The α → β polytypic transformation in high-temperature indented SiC

Published online by Cambridge University Press:  03 March 2011

J.W. Yang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
Get access

Abstract

High-quality single crystals of 6H–SiC have been indented at 1170 °C in vacuum. A TEM study of the indented regions shows that a 6H → 3C polytypic transformation has occurred, further confirming that this phase transformation can be induced by an applied stress.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, R. F., Kelner, G., Shur, M., Palmour, J. W., and Edmund, J. A., Proc. IEEE 79, 677 (1991).CrossRefGoogle Scholar
2Ramsdell, L. S., Am. Mineralogist 32, 64 (1947).Google Scholar
3Heine, V., Cheng, C., Engel, G. E., and Needs, R. J., in Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I., and Hamakawa, Y. (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), pp. 507518.Google Scholar
4Tairov, Y. M. and Tsvetkov, V. F., J. Cryst. Growth 43, 209 (1978).CrossRefGoogle Scholar
5Nishino, S., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
6Kong, H. S., Glass, J. T., and Davis, R. F., Appl. Phys. Lett. 49, 1074 (1986).CrossRefGoogle Scholar
7Kong, H. S., Glass, J. T., and Davis, R. F., J. Appl. Phys. 64, 2672 (1988).CrossRefGoogle Scholar
8Jepps, N. W. and Page, T. F., in Progress in Crystal Growth and Characterization, edited by Krishna, P. (Pergamon Press, Oxford, 1983), Vol. 7, pp. 256306.Google Scholar
9Kieffer, A. R., Ettmayer, P., Gugel, E., and Schmidt, A., Mater. Res. Bull. IV, S153–166 (1969).Google Scholar
10Jepps, N. W. and Page, T. F., J. Am. Ceram. Soc. 64, C-177178 (1981).CrossRefGoogle Scholar
11Knippenberg, W. F. and Verspui, G., Mater. Res. Bull. IV, S4456 (1969).Google Scholar
12Sokhor, M. I., Kondakov, V. G., and Fel'dgun, L. I., Sov. Phys. Dokl. 12, 749751 (1968).Google Scholar
13Whitney, E. D. and Shaffer, P. T. B., High Temp.-High Press. I, 107110 (1969).Google Scholar
14Page, T. F., Sawyer, G. R., Adewoye, O. O., and Wert, J. J., Proc. Br. Ceram. Soc. 26, 193208 (1978).Google Scholar
15Yang, J. W., Suzuki, T., Pirouz, P., Powell, J. A., and Iseki, T., in Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I., and Hamakawa, Y. (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), pp. 531536.Google Scholar
16Pirouz, P., Inst. Phys. Conf. Ser. No. 104, 49 (1989).Google Scholar
17Suematsu, H., Suzuki, T., Iseki, T., and Mori, T., J. Am. Ceram. Soc. 74, 173 (1991).CrossRefGoogle Scholar
18Maeda, K., Suzuki, K., Fujita, S., Ichihara, M., and Hyodo, S., Philos. Mag. A 57, 573 (1988).CrossRefGoogle Scholar
19Pirouz, P. and Yang, J. W., Ultramicroscopy 51, 189 (1993).CrossRefGoogle Scholar
20Hirsch, P. B., Pirouz, P., Roberts, S. G., and Warren, P. D., Philos. Mag. B 52, 759 (1985).CrossRefGoogle Scholar