Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T11:49:55.936Z Has data issue: false hasContentIssue false

Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization

Published online by Cambridge University Press:  27 March 2013

Claudia G. Espinosa-González
Affiliation:
Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, San Luis Potosí 78216, México
Fernando J. Rodríguez-Macías
Affiliation:
Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, San Luis Potosí 78216, México; and Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Pernambuco 50740-540, Brazil
Abraham G. Cano-Márquez
Affiliation:
Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, San Luis Potosí 78216, México
Jasmeet Kaur
Affiliation:
School of Polymer, Textile & Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
Meisha L. Shofner
Affiliation:
School of Polymer, Textile & Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295; and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Yadira I. Vega-Cantú*
Affiliation:
Advanced Materials Department, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, San Luis Potosí 78216, México; and Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Pernambuco 50740-540, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

We introduce a novel method for producing polystyrene (PS)-grafted multiwalled carbon nanotubes (MWCNTs), which provides a direct route to composites where carbon nanotubes (CNTs) are the major component. Infrared and Raman spectroscopies confirmed that the MWCNTs were functionalized with PS. Thermogravimetric analysis showed that CNTs increase thermal stability of the composite up to a critical loading (∼40 wt%) beyond which high nanotube loadings decrease the polymer degradation temperature, as a consequence of the thermal properties of CNTs and the composite morphology. Even at loadings as high as 80 wt% MWCNTs, the composite is an effective masterbatch material for both solution- and melt-processing. These results show that in situ polymerizations can be flexible and robust techniques for nanocomposite processing, overcoming limitations of conventional processing techniques to produce nanocomposites with very high nanotube loadings, not achieved hitherto.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Qian, D., Wagner, G.J., Liu, W.K., Yu, M-F., and Ruoff, R.S.: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495 (2002).Google Scholar
Terrones, M.: Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419 (2003).Google Scholar
Thostenson, E.T., Ren, Z., and Chou, T-W.: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899 (2001).Google Scholar
Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C.: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357 (2010).CrossRefGoogle Scholar
Schaefer, D.W. and Justice, R.S.: How nano are nanocomposites. Macromolecules 40, 8501 (2007).Google Scholar
Du, J-H., Bai, J., and Cheng, H-M.: The present status and key problems of carbon nanotube based polymer composites. Express Polym. Lett. 1, 253 (2007).Google Scholar
Moniruzzaman, M. and Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).CrossRefGoogle Scholar
Ramesh, S., Ericson, L.M., Davis, V.A., Saini, R.K., Kittrell, C., Pasquali, M., Billups, W.E., Adams, W.W., Hauge, R.H., and Smalley, R.E.: Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794 (2004).CrossRefGoogle Scholar
Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E., and Tour, J.M.: Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem. Commun. 193 (2001).Google Scholar
Bergin, S.D., Sun, Z., Streich, P., Hamilton, J., and Coleman, J.N.: New solvents for nanotubes: Approaching the dispersibility of surfactants. J. Phys. Chem. C 114, 231 (2010).Google Scholar
Ausman, K.D., Piner, R., Lourie, O., and Ruoff, R.S.: Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. J. Phys. Chem. B 104, 8911 (2000).Google Scholar
Sun, Y.P., Fu, K., Lin, Y., and Huang, W.: Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35, 1096 (2002).Google Scholar
Baughman, R.H., Zakhidov, A.A., and de Heer, W.A.: Carbon nanotubes – the route toward applications. Science 297, 787 (2004).CrossRefGoogle Scholar
Thayer, A.M.: Carbon nanotubes by the metric ton. Chem. Eng. News 85, 29 (2007).Google Scholar
Hyperion Catalysis International, FIBRIL Nanotube-Based Masterbatches: http://www.hyperioncatalysis.com/masterbatches2.htm (accessed August 10, 2011).Google Scholar
Prashantha, K., Soulestin, J., Lacrampe, M.F., Krawczak, P., Dupin, G., and Claes, M.: Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol. 69, 1756 (2009).CrossRefGoogle Scholar
Dyke, C.A. and Tour, J.M.: Covalent functionalization of single-walled carbon nanotubes for materials applications. J. Phys. Chem. A 108, 11151 (2004).CrossRefGoogle Scholar
Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).CrossRefGoogle Scholar
Peng, X. and Wong, S.S.: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).Google Scholar
Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P., and Hirsch, A.: Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 1, 190 (2002).CrossRefGoogle ScholarPubMed
Shofner, M.L., Rodriguez-Macias, F.J., Vaidyanathan, R., and Barrera, E.V.: Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Composites Part A 34, 1207 (2003).Google Scholar
Seo, M-K. and Park, S-J.: Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem. Phys. Lett. 395, 44 (2004).CrossRefGoogle Scholar
Pötschke, P., Fornes, T.D., and Paul, D.R.: Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43, 3247 (2002).Google Scholar
Blighe, F.M., Blau, W.J., and Coleman, J.N.: Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels. Nanotechnology 19, 415709 (2008).Google Scholar
Pham, G.T., Park, Y-B., Wang, S., Liang, Z., Wang, B., Zhang, C., Funchess, P., and Kramer, L.: Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology 19, 325705 (2008).CrossRefGoogle ScholarPubMed
Song, L., Zhang, H., Zhang, Z., and Xie, S.: Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites Part A 38, 388 (2007).CrossRefGoogle Scholar
Hou, H., Ge, J.J., Zeng, J., Li, Q., Reneker, D.H., Greiner, A., and Cheng, S.Z.D.: Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 17, 967 (2005).CrossRefGoogle Scholar
Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., and Cavaillé, J.Y.: Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Compos. Sci. Technol. 68, 3265 (2008).Google Scholar
Yang, Z., Chen, X., Pu, Y., Zhou, L., Chen, C., Li, W., Xu, L., Yi, B., and Wang, Y.: Facile approach to obtain individual-nanotube dispersion at high loading in carbon nanotubes/polyimide composites. Polym. Adv. Technol. 18, 458 (2007).CrossRefGoogle Scholar
Liang, F., Sadana, A.K., Peera, A., Chattopadhyay, J., Gu, Z., Hauge, R.H., and Billups, W.E.: A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257 (2004).Google Scholar
Chattopadhyay, J., Sadana, A.K., Liang, F., Beach, J.M., Xiao, Y., Hauge, R.H., and Billups, W.E.: Carbon nanotube salts. Arylation of single-wall carbon nanotubes. Org. Lett. 7, 4067 (2005).Google Scholar
Stephenson, J.J., Sadana, A.K., Higginbotham, A.L., and Tour, J.M.: Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: The Billups reaction. Chem. Mater. 18, 4658 (2006).Google Scholar
Liang, F., Beach, J.M., Kobashi, K., Sadana, A.K., Vega-Cantu, Y.I., Tour, J.M., and Billups, W.E.: In situ polymerization initiated by single-walled carbon nanotube salts. Chem. Mater. 18, 4764 (2006).CrossRefGoogle Scholar
Kamalakaran, R., Terrones, M., Seeger, T., Kohler-Redlich, P., Rühle, M., Kim, Y.A., Hayashi, T., and Endo, M.: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl. Phys. Lett. 77, 3385 (2000).Google Scholar
Alvizo-Paez, E.R., Romo-Herrera, J.M., Terrones, H., Terrones, M., Ruiz-García, J., and Hernández-López, J.L.: Soft purification of N-doped and undoped multi- wall carbon nanotubes. Nanotechnology 19, 155701 (2008).CrossRefGoogle ScholarPubMed
Pekker, S., Salvetat, J.P., Jakab, E., Bonard, J.M., and Forro, L.: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001).Google Scholar
Chattopadhyay, J., Chakraborty, S., Mukherjee, A., Wang, R., Engel, P.S., and Billups, W.E.: SET mechanism in the functionalization of single-walled carbon nanotubes. J. Phys. Chem. C 111, 17928 (2007).Google Scholar
Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., and Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).CrossRefGoogle ScholarPubMed
Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., and Douglas, J.: Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Comm. 23, 761 (2002).Google Scholar
Liu, Y., Yao, Z., and Adronov, A.: Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 38, 1172 (2005).CrossRefGoogle Scholar
Cano-Márquez, A.G., Rodríguez-Macías, F.J., Campos-Delgado, J., Espinosa-González, C.G., Tristán-López, F., Ramírez-González, D., Cullen, D., Smith, D., Terrones, M., and Vega-Cantú, Y.I.: Ex-MWNT: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527 (2009).Google Scholar
Supplementary material: File

Espinosa-González et al. supplementary material

Supplementary figures

Download Espinosa-González et al. supplementary material(File)
File 6.3 MB