Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:25:27.688Z Has data issue: false hasContentIssue false

Poly(methyl methacrylate)–nanoribbon nanocomposites with high thermal stability and improvement in the glass-transition temperature

Published online by Cambridge University Press:  31 January 2011

Yanyan Ding
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
Zhou Gui*
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
Jixin Zhu
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
Zhengzhou Wang
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
Yuan Hu
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
Lei Song
Affiliation:
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel poly(methyl methacrylate) (PMMA) nanocomposite containing dispersed inorganic nanoribbons [ZnO–0.15Zn(CH3COO)2–0.85H2O] was prepared by free radical polymerization of methyl methacrylate in the acetone solution. Experimental results showed that inorganic nanoribbons were uniformly distributed in and bonded to the PMMA host matrix without macroscopic organic–inorganic phase separation. It was found that the thermal stability and glass-transition temperature of the nanocomposite films increased effectively with increasing inorganic content at low content and remained above 1 wt% inorganic content. These results suggest the network formation because of the strong interaction between the inorganic nanoribbons and the polymer matrix, which induces the mobility restriction of polymer chains. The characteristics of the one-dimensional inorganic nanoribbons we used here may play a key role in the formation of the “cross-link” networks and in the decision to lower the content of the inorganic nanoribbon additive.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chapman, R.Mulvaney, P.: Electro-optical shifts in silver nanoparticle films. Chem. Phys. Lett. 349, 358 2001CrossRefGoogle Scholar
2Wilson, O., Wilson, G.J.Mulvaney, P.: Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000 2002Google Scholar
3Yoon, P.J., Fornes, T.D.Paul, D.R.: Thermal expansion behavior of nylon 6 nanocomposites. Polymer 43, 6727 2002Google Scholar
4Kashiwagi, T., Du, F., Douglas, J.F., Winey, K., Harris, R.H. Jr.Shields, J.R.: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928 2005Google Scholar
5Lu, Y.F., Yang, Y.Sellinger, A.: Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410, 913 2001Google Scholar
6Chen, Y.C., Raravikar, N.R., Schadler, L.S., Ajayan, P.M., Zao, Y.P., Lu, T.M., Wang, G.C.Zhang, X.C.: Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Appl. Phys. Lett. 81, 975 2002CrossRefGoogle Scholar
7Kymakis, E.Amartunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112 2002Google Scholar
8Philip, B., Abraham, J.K., Chandrasekhar, A.Varadan, V.K.: Carbon nanotube/PMMA composite thin films for gas-sensing applications. Mater. Struct. 12, 935 2003Google Scholar
9Rege, K., Raravikar, N.R., Kim, D.Y., Schadler, L.S., Ajayan, P.M.Dordick, J.S.: Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Lett. 3, 829 2003Google Scholar
10Kobayashi, M., Rharbi, Y., Brauge, L., Cao, L.Winnik, M.A.: Effect of silica as fillers on polymer interdiffusion in poly(butyl methacrylate) latex films. Macromolecules 35, 7387 2002Google Scholar
11Karim, A., Yurkeli, K., Meredith, C., Amis, E.Krishnamoorti, R.: Combinatorial methods for polymer materials science: Phase behavior of nanocomposite blend films. Polym. Eng. Sci. 42, 1836 2002Google Scholar
12Alexandre, M.Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28, 1 2000CrossRefGoogle Scholar
13Liu, Z.H., Yang, X.J., Makita, Y.Ooi, K.: Synthesis of a new layered manganese oxide nanocomposite through a delamination/reassembling process. Chem. Lett. (Jpn.) 7, 680 2002Google Scholar
14Heising, J.Kanatzidis, M.G.: Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638 1999Google Scholar
15Sukpirom, N.Lerner, M.M.: Preparation of organic-inorganic nanocomposites with a layered titanate. Chem. Mater. 13, 2179 2001Google Scholar
16Nakato, T., Furumi, Y., Terao, N.Okuhara, T.: Reaction of layered vanadium phosphorus oxides, VOHPO4·0.5H2O and VOHPO4·0.5H2O, with amines and formation of exfoliative intercalation compounds. J. Mater. Chem. 10, 737 2000Google Scholar
17Leroux, F., Adachi-Pagano, M.Intissar, M., Chauvière, S., Forano, C., Bess, J.P.: Delamination and restacking of layered double hydroxides. J. Mater. Chem. 11, 105 2001CrossRefGoogle Scholar
18Gilman, J.W.: Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31 1999Google Scholar
19Raravikar, N.R., Schadler, L.S., Vijayaraghavan, A., Zhao, Y.P., Wei, B.Q.Ajayan, P.M.: Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films. Chem. Mater. 17, 974 2005Google Scholar
20Laachachi, A., Cochez, M., Ferriol, M., Leroy, E., Lopez-Cuesta, J.M.Oget, N.: Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA). Polym. Degrad. Stab. 85, 641 2004Google Scholar
21Cao, Z., Xie, W., Hwu, J.M., Wells, L.Pan, W.P.J.: The Characterization of organic modified montmorillonite and its filled PMMA nanocomposite. Thermal Anal. Calorim. 64, 467 2001Google Scholar
22Soldera, A.Metatla, N.: Glass transition phenomena observed in stereoregular PMMAs using molecular modeling. Compos. Part A: Appl. Sci. Manuf. 36, 521 2005Google Scholar
23Gui, Z., Liu, J., Wang, Z.Z., Song, L., Hu, Y., Fan, W.C.Chen, D.Y.: From muticomponent precursor to nanoparticle nanoribbons of ZnO. J. Phys. Chem. B 109, 1113 2005CrossRefGoogle Scholar
24Avella, M., Errico, M.E., Martelli, S.Martuscelli, E.: Preparation methodologies of polymer matrix nanocomposites. Appl. Organomet. Chem. 15, 435 2001Google Scholar
25Avella, M., Errico, M.E.Martuscelli, E.: Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process. Nano Lett. 1, 213 2001Google Scholar
26Tammaro, L., Tortora, M., Vittoria, V., Costantino, U.Marmottini, F.: Methods of preparation of novel composites of poly(ϵ-caprolactone) and a modified Mg/Al hydrotalcite. J. Polym. Sci., Part A: Polym. Chem. 43, 2281 2005CrossRefGoogle Scholar
27Manninen, A.R., Naguib, H.E., Nawaby, A.V.Day, M.: CO2 Sorption and diffusion in polymethyl methacrylate–clay nanocomposites. Polym. Eng. Sci. 45, 904 2005Google Scholar
28Wang, H.T., Xu, P., Zhong, W., Shen, L.Du, Q.G.: Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym. Degrad. Stab. 87, 319 2005Google Scholar
29Laachachi, A., Cochez, M., Ferriol, M., Lopez-Cuesta, J.M.Leroy, E.: Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Mater. Lett. 59, 36 2005Google Scholar
30Yang, J., Xue, C., Yu, S.H., Zeng, J.H.Qian, Y.T.: General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew. Chem., Int. Ed. Engl. 41, 4697 2002Google Scholar
31Yuan, X.H., Peng, Z.L., Zhang, Y.Zhang, Y.X.: In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR. J. Appl. Polym. Sci. 12, 2740 2000Google Scholar
32Ishigaki, Y., Takahashi, K.Fukuda, H.: Stereochemistry of the free-radical polymerization of zinc methacrylates coordinated with a bidentate ligand. Macromol. Rapid Commun. 15, 1024 20003.0.CO;2-D>CrossRefGoogle Scholar