Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T05:45:01.714Z Has data issue: false hasContentIssue false

Poly(meta-phenylene isophthalamide) nanofibers: Coating and post processing

Published online by Cambridge University Press:  31 January 2011

Wenxia Liu
Affiliation:
Maurice Morton Institute of Polymer Science, The University of Akron, Ohio 44325-3909
Matthew Graham
Affiliation:
Department of Chemical Engineering, The University of Akron, Ohio 44325-3909
Edward A. Evans
Affiliation:
Department of Chemical Engineering, The University of Akron, Ohio 44325-3909
Darrell H. Reneker
Affiliation:
Maurice Morton Institute of Polymer Science, The University of Akron, Ohio 44325-3909
Get access

Abstract

Electrospun nanofibers have applications in the areas of filtration, composites, biomaterials, and electronics. Controlling the surface properties of these nanofibers is important for many applications. Nanofibers can also be used as unique substrates for observing the growth of deposited films and creating nanoscale structures. In this work, electrospun poly(meta-phenylene isophthalamide) (MPD-I) nanofibers were used as substrates for creating nanoscale structures out of carbon-based materials and metals. MPD-I was used because it can be electrospun into nanofibers with diameters smaller than 10 nm and it has good thermal stability. MPD-I nanofibers were coated with carbon, copper, and aluminum using plasma enhanced chemical vapor deposition and physical vapor deposition methods. Some of the aluminum-coated nanofibers were then converted into nanotubes. Transmission electron microscopy was used to determine the thickness, uniformity, and grain size of the coatings on the fibers and the nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Duan, X., Huang, Y., Wang, J., and Lieber, C.M., Nature 409, 66 (2001).CrossRefGoogle Scholar
2.Chi, Y. and Lieber, C.M., Science 291, 851 (2001).Google Scholar
3.Stix, G., Scientific American 285, 32 (2001).CrossRefGoogle Scholar
4.Reneker, D.H., Yarin, A.L., Fong, H., and Koombhongse, S., J. Appl. Phys. 87, 4531 (2000).CrossRefGoogle Scholar
5.Yarin, A.L., Koombhongse, S., and Reneker, D.H., J. Appl. Phys. 89, 3018 (2001).CrossRefGoogle Scholar
6.Fong, H. and Reneker, D.H., in Structure Formation In Polymeric Fibers, edited by Salem, D.R. (Hanser, Cincinnati, OH, 2001), Chap. 6.Google Scholar
7.Reneker, D.H. and Chun, I., Nanotechnology 7, 216 (1996).CrossRefGoogle Scholar
8.Yarin, A.L., Koombhongse, S., and Reneker, D.H., J. Appl. Phys. 90, 4836 (2001).CrossRefGoogle Scholar
9.Shin, Y.M., Hohman, M.M., Brenner, M.P., and Rutledge, G.C., J. Appl. Phys. Lett. 78, 1149 (2001).CrossRefGoogle Scholar
10.Shin, Y.M., Hohman, M.M., Brenner, M.P., and Rutledge, G.C., Polymer 42, 9955 (2001).CrossRefGoogle Scholar
11.Fong, H. and Reneker, D.H., J. Polym. Sci.: Part B, 16Polym. Phys. 37, 3488 (1999).3.0.CO;2-M>CrossRefGoogle Scholar
12.Huang, L., McMillan, R.D., Apkarian, R.P., Pourdeyhimi, B., Conticello, V.P., and Chaikof, E.L., Macromolecules 33, 2989 (2000).CrossRefGoogle Scholar
13.Norris, I.D., Shaker, M.M., Ko, F.K., and MacDiarmid, A.G., Synth. Met. 114, 109 (2000).CrossRefGoogle Scholar
14.Liu, W., Wu, Z., and Reneker, D.H., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 41, 1193 (2000).Google Scholar
15.Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A., and Wendorff, J.H., Adv. Mater. 13, 70 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
16.Gibson, P.W., Schreuder-Gibson, H.L., and Rivin, D., AlChE J. 45, 190 (1999).CrossRefGoogle Scholar
17.Kim, J.S. and Reneker, D.H., Polym. Comp. 20, 124 (1999).CrossRefGoogle Scholar
18.Kim, J.S. and Reneker, D.H., Polym. Eng. Sci. 39, 849 (1999).CrossRefGoogle Scholar
19.Dzenis, Y.A. and Reneker, D.H., Proc. Am. Soc. Compos., Tech. Conf., 9th, 657 (1994).Google Scholar
20.Bergshoef, M.M. and Vancso, G.J., Adv. Mater. 11, 1362 (1999).3.0.CO;2-X>CrossRefGoogle Scholar
21.Stitzel, J.D., Bowlin, G.L., Mansfield, K., Wnek, G.E., and Simpson, D.G., Int. SAMPE Tech. Conf. 32, 205 (2000).Google Scholar
22.Smith, D. and Reneker, D.H., PCT Int. Appl. WO2001026702.Google Scholar
23.Smith, D., Reneker, D.H., Kataphinan, W., and Dabney, S., patent WO2001026610.Google Scholar
24.Caruso, R.A., Schattka, J.H., and Greiner, A.. Adv. Mater. 13, 1577 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
25.Hou, H., Jun, Z.Reuning, A.. Schaper, A., Wedorff, J.H., and Greiner, A., Macromolecules 35, 2429 (2002).CrossRefGoogle Scholar
26.Bognitzki, M., Hou, H., Ishaque, M., Frese, T., Hellwig, M., Schwarte, C., Schaper, A., Wendorff, J.H., and Greiner, A., Adv. Mater. 12, 637 (2000).3.0.CO;2-W>CrossRefGoogle Scholar
27.Kakida, H., Chatani, Y., and Tadokoro, H., J. Polym. Sci.: Polym. Phys. 14, 427 (1976).Google Scholar
28.Tadokoro, H., Jpn.-USSR Polym. Symp., 21 (1976).Google Scholar
29.Bognitzki, M., Frese, T., Wendorff, J.H., and Greiner, A., Preprints of the American Chemical Society Division of Polymeric Materials: Science and Engineering, 82, 115 (2000).Google Scholar
30.Koombhongse, S., Liu, W., and Reneker, D.H., J. Polym. Sci.: Part B: Polym. Phys. 39, 2598 (2001).CrossRefGoogle Scholar
31.Evans, E.A., Hafeli, U., Wusirika, R., and Morrison, P.W., in Amorphous and Nanostructured Carbon, edited by Robertson, J., Sullivan, J.P., Zhou, O., Allen, T.B., and Call, B.F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), p. 433.Google Scholar
32.Cullity, B.D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, London, U.K., 1978).Google Scholar
33.Lu, L., Adv. Mater. 11, 1127 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
34.Gleiter, H., Prog. Mater. Sci. 33, 323 (1989).CrossRefGoogle Scholar
35.Wefers, K. and Mistra, C., Oxides and Hydroxides of Aluminum, Alcoa Technical Paper No. 19 (Alcoa Laboratories, 1987).Google Scholar
36.Day, M., Cooney, J.D., Shaw, K., and Watts, J., J. Therm. Anal. 52, 261 (1998).CrossRefGoogle Scholar
37.Collyer, A.A., Mater. Sci. Technol. 6, 981 (1990).CrossRefGoogle Scholar
38.Brock, A.J. and Pryor, M.J., Corros. Sci. 13, 199 (1973).CrossRefGoogle Scholar
39.Thomas, K. and Robberts, M.W., J. Appl. Phys. 32, 70 (1961).CrossRefGoogle Scholar
40.Doherty, P.E. and Davis, R.S., J. Appl. Phys. 34, 619 (1963).CrossRefGoogle Scholar
41.Randall, J.J. and Bernard, W.J.J., J. Appl. Phys. 35, 1317 (1964).CrossRefGoogle Scholar
42.Caruso, F., Shi, X., Caruso, R.A., and Susha, A., Adv. Mater. 13, 740 (2001).3.0.CO;2-6>CrossRefGoogle Scholar
43.Lu, Y., Yin, Y., and Xia, Y., Adv. Mater. 13, 271 (2001).3.0.CO;2-T>CrossRefGoogle Scholar