Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:31:51.910Z Has data issue: false hasContentIssue false

Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends

Published online by Cambridge University Press:  21 March 2012

Run Su
Affiliation:
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People’s Republic of China; and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202
Ganji Zhong
Affiliation:
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People’s Republic of China; and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202
Qiang Fu
Affiliation:
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
Lifeng Zhang
Affiliation:
Department of Chemistry, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701-3995
Hao Fong*
Affiliation:
Department of Chemistry, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701-3995
Lei Zhu*
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this study, crystal orientation and polymorphism formation in electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN) blend fibers after melt-recrystallization were studied. To achieve uniform alignment of electrospun fibers, mechanical stretching was applied to the as-spun nonwoven fibers at 110 °C. Pure ferroelectric β-PVDF crystals in the PAN matrix were achieved, and both polar β-PVDF and polar PAN crystals oriented with their chain axes parallel to the fiber axes. After melt-recrystallization of PVDF, a significant amount of ferroelectric β crystals was retained in addition to the formation of nonpolar α crystals. A polarized Fourier transform infrared study showed that the degree of orientation of ferroelectric β-PVDF crystals was higher than that of nonpolar α crystals, suggesting that the β-PVDF crystals should form at the PVDF/PAN interfaces because of strong dipolar and hydrogen bonding interactions between vinylidene fluoride and acrylonitrile units. The nonpolar α-PVDF crystals should form in the center of PVDF domains.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nalwa, H.S.: Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, New York, 1995).CrossRefGoogle Scholar
2.Ducharme, S., Reece, T.J., Othon, C.M., and Rannow, R.K.: Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans. Device Mater. Reliab. 5, 720 (2005).CrossRefGoogle Scholar
3.Ling, Q.D., Liaw, D.J., Zhu, C., Chan, D.S.H., Kang, E.T., and Neoh, K.G.: Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci. 33, 917 (2008).CrossRefGoogle Scholar
4.Hu, Z., Tian, M., Nysten, B., and Jonas, A.M.: Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater. 8, 62 (2009).CrossRefGoogle ScholarPubMed
5.Naber, R.C.G., Asadi, K., Blom, P.W.M., de Leeuw, D.M., and de Boer, B.: Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933 (2010).CrossRefGoogle ScholarPubMed
6.Furukawa, T., Takahashi, Y., and Nakajima, T.: Recent advances in ferroelectric polymer thin films for memory applications. Curr. Appl. Phys. 10, E62 (2010).CrossRefGoogle Scholar
7.Chen, Q.X. and Payne, P.A.: Industrial applications of piezoelectric polymer transducers. Meas. Sci. Technol. 6, 249 (1995).CrossRefGoogle Scholar
8.Zhang, Q.M., Li, H., Poh, M., Xia, F., Cheng, Z.Y., Xu, H., and Huang, C.: An all-organic composite actuator material with a high-dielectric constant. Nature 419, 284 (2002).CrossRefGoogle ScholarPubMed
9.Brochu, P. and Pei, Q.: Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31, 10 (2010).CrossRefGoogle ScholarPubMed
10.Chu, B., Zhou, X., Ren, K., Neese, B., Lin, M., Wang, Q., Bauer, F., and Zhang, Q.M.: A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 1887 (2006).CrossRefGoogle ScholarPubMed
11.Zhou, X., Chu, B., Neese, B., Lin, M., and Zhang, Q.M.: Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer. IEEE Trans. Dielectr. Electr. Insul. 14, 1133 (2007).CrossRefGoogle Scholar
12.Guan, F., Pan, J., Wang, J., Wang, Q., and Zhu, L.: Crystal orientation effect on electric energy storage in poly(vinylidene fluoride-co-hexafluoropropylene) copolymers. Macromolecules 43, 384 (2010).CrossRefGoogle Scholar
13.Guan, F., Wang, J., Pan, J., Wang, Q., and Zhu, L.: Effects of polymorphism and crystallite size on dipole reorientation in poly(vinylidene fluoride) and its random copolymers. Macromolecules 43, 6739 (2010).CrossRefGoogle Scholar
14.Guan, F., Wang, J., Yang, L., Han, K., Wang, Q., and Zhu, L.: Confinement-induced high field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules 44, 2190 (2011).CrossRefGoogle Scholar
15.Guan, F., Wang, J., Yang, L., Guan, B., Han, K., Wang, Q., and Zhu, L.: Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications. Adv. Funct. Mater. 21, 3176 (2011).CrossRefGoogle Scholar
16.Tashiro, K.: Crystal structure and phase transition of PVDF and related copolymers, in Ferroelectric Polymers: Chemistry, Physics, and Applications, edited by Nalwa, H.S. (Marcel Dekker, New York, 1995), p. 63.Google Scholar
17.Lovinger, A.J.: Ferroelectric polymers. Science 220, 1115 (1983).CrossRefGoogle ScholarPubMed
18.Gregorio, R. and Cestari, M.: Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 32, 859 (1994).CrossRefGoogle Scholar
19.Zhong, G., Zhang, L., Su, R., Wang, K., Fong, H., and Zhu, L.: Understanding polymorphism formation in electrospun fibers of immiscible poly(vinylidene fluoride) blends. Polymer 52, 2228 (2011).CrossRefGoogle Scholar
20.Benkhati, H., Tan, T.T.M., and Jungnickel, B.J.: Transcrystallization kinetics of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Phys. 39, 2130 (2001).CrossRefGoogle Scholar
21.Lovinger, A.J.: Crystallization of the β phase of poly(vinylidene fluoride) from the melt. Polymer 22, 412 (1981).CrossRefGoogle Scholar
22.Lovinger, A.J.: Unit-cell of the γ phase of poly(vinylidene fluoride). Macromolecules 14, 322 (1981).CrossRefGoogle Scholar
23.Lovinger, A.J.: Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J. Appl. Phys. 52, 5934 (1981).CrossRefGoogle Scholar
24.Miyazaki, T., Takeda, Y., Akasaka, M., Sakai, M., and Hoshiko, A.: Preparation of isothermally crystallized γ-form poly(vinylidene fluoride) films by adding a KBr powder as a nucleating agent. Macromolecules 41, 2749 (2008).CrossRefGoogle Scholar
25.Priya, L. and Jog, J.P.: Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies. J. Polym. Sci., Part B: Polym. Phys. 40, 1682 (2002).CrossRefGoogle Scholar
26.Buckley, J., Cebe, P., Cherdack, D., Crawford, J., Ince, B.S., Jenkins, M., Pan, J., Reveley, M., Washington, N., and Wolchover, N.: Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47, 2411 (2006).CrossRefGoogle Scholar
27.Dillon, D.R., Tenneti, K.K., Li, C.Y., Ko, F.K., Sics, I., and Hsiao, B.S.: On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites. Polymer 47, 1678 (2006).CrossRefGoogle Scholar
28.Shah, D., Maiti, P., Gunn, E., Schmidt, D.F., Jiang, D.D., Batt, C.A., and Giannelis, E.R.: Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 16, 1173 (2004).CrossRefGoogle Scholar
29.Wu, T., Xie, T., and Yang, G.: Characterization of poly(vinylidene fluoride)/Na+-MMT composites: An investigation into the β-crystalline nucleation effect of Na+-MMT. J. Polym. Sci., Part B: Polym. Phys. 47, 903 (2009).CrossRefGoogle Scholar
30.He, L., Xu, Q., Hue, C., and Song, R.: Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polym. Compos. 31, 921 (2010).CrossRefGoogle Scholar
31.Kim, G.H., Hong, S.M., and Seo, Y.: Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-Phase development. Phys. Chem. Chem. Phys. 11, 10506 (2009).CrossRefGoogle ScholarPubMed
32.Li, Y. and Kaito, A.: Mechanistic investigation into the unique orientation textures of poly(vinylidene fluoride) in blends with nylon 11. Macromol. Rapid Commun. 24, 603 (2003).CrossRefGoogle Scholar
33.Li, Y. and Kaito, A.: Crystallization and orientation behaviors of poly(vinylidene fluoride) in the oriented blend with nylon 11. Polymer 44, 8167 (2003).CrossRefGoogle Scholar
34.Kim, K.J., Cho, H.W., and Yoon, K.J.: Effect of P(MMA-co-MAA) compatibilizer on the miscibility of nylon 6/PVDF blends. Eur. Polym. J. 39, 1249 (2003).CrossRefGoogle Scholar
35.Kaito, A., Iwakura, Y., Li, Y., Nakayama, K., and Shimizu, H.: Unique orientation textures induced by confined crystal growth of poly(vinylidene fluoride) in oriented blends with polyamide 6. Macromol. Chem. Phys. 208, 504 (2007).CrossRefGoogle Scholar
36.Na, B., Xu, W., Lv, R., Li, Z., Tian, N., and Zou, S.: Toughening of nylon-6 by semicrystalline poly(vinylidene fluoride): Role of phase transformation and fibrillation of dispersed particles. Macromolecules 43, 3911 (2010).CrossRefGoogle Scholar
37.Lai, C., Zhong, G., Yue, Z., Chen, G., Zhang, L., Vakili, A., Wang, Y., Zhu, L., Liu, J., and Fong, H.: Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer 52, 519 (2011).CrossRefGoogle Scholar
38.Li, F.M., Kim, K.H., Kulig, J.J., Savitski, E.P., Brittain, W.J., Harris, F.W., Cheng, S.Z.D., Hubbard, S.F., and Singer, K.D.: High-temperature aromatic polyimide film displaying nonlinear-optical 2nd-harmonic generation based on the approach of the poled guest-host system. J. Mater. Chem. 5, 253 (1995).CrossRefGoogle Scholar
39.Na, H.N., Liu, X.W., Li, J.Q., Zhao, Y.H., Zhao, C., and Yuan, X.Y.: Formation of core/shell ultrafine fibers of PVDF/PC by electrospinning via introduction of PMMA or BTEAC. Polymer 50, 6340 (2009).CrossRefGoogle Scholar
40.Na, H.N., Liu, X.W., Sun, H., Zhao, Y.H., Zhao, C., and Yuan, X.Y.: Electrospinning of ultrafine PVDF/PC fibers from their dispersed solutions. J. Polym. Sci., Part B: Polym. Phys. 48, 372 (2010).CrossRefGoogle Scholar
41.Zhong, G., Wang, K., Zhang, L., Li, Z-M., Fong, H., and Zhu, L.: Nanodroplet formation and exclusive homogenously nucleated crystallization in confined electrospun immiscible polymer blend fibers of polystyrene and poly(ethylene oxide). Polymer 52, 5397 (2011).CrossRefGoogle Scholar
42.Colvin, B.G. and Storr, P.: Crystal-structure of polyacrylonitrile. Eur. Polym. J. 10, 337 (1974).CrossRefGoogle Scholar
43.Liu, X.D. and Ruland, W.: X-Ray studies on the structure of polyacrylonitrile fibers. Macromolecules 26, 3030 (1993).CrossRefGoogle Scholar
44.Gradys, A., Sajkiewicz, P., Adamovsky, S., Minakov, A., and Schick, C.: Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim. Acta 461, 153 (2007).CrossRefGoogle Scholar
45.Kobayashi, M., Tashiro, K., and Tadokoro, H.: Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158 (1975).CrossRefGoogle Scholar
46.Gao, Q. and Scheinbeim, J.: Crystallization studies of polymer blends of nylon-11/poly(vinylidene fluoride). Polym. J. 35, 345 (2003).CrossRefGoogle Scholar