Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:41:30.986Z Has data issue: false hasContentIssue false

Point-defects in magnesium sulfide

Published online by Cambridge University Press:  03 March 2011

Upendra Puntambekar
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931–1295
Sunder Veliah
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931–1295
Ravindra Pandey
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931–1295
Get access

Abstract

The results of a study of point defects in MgS are presented. First we obtain empirical interionic potentials in the framework of a shell model and then calculate defect energies using the HADES and ICECAP simulation procedures. The calculated Schottky formation energy is 10.9 eV in comparison to the cation and anion Frenkel formation energies of 11.9 and 25.1 eV, respectively. The migration energy by the vacancy mechanism of the Mg2+ and S2− ions is predicted to be 2.5 and 3.4 eV, respectively. One-electron ICECAP calculations yield the optical absorption energy of 3.1 eV for the F+ center in MgS.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Leonard, P., Schmidt, F., and Tomascheck, R., HandbookExp. Phys. (Akademie Verlagsges, Leipzig, 1928), Vol. 23.Google Scholar
2Chakrabarti, K., Mathur, V. K., Rhodes, J. F., and Abbundi, R. J., J. Appl. Phys. 64, 1363 (1988).CrossRefGoogle Scholar
3Pandey, R. and Harding, J. H., Philos. Mag. B 49, 135 (1984).CrossRefGoogle Scholar
4Pandey, R., Kunz, A. B., and Vail, J. M., J. Mater. Res. 3, 1362 (1988).CrossRefGoogle Scholar
5Pandey, R., Jaffe, J., and Kunz, A. B., Phys. Rev. B 43, 9228 (1991).CrossRefGoogle Scholar
6Lidiard, A. B. and Norgett, M. J., in Computational Solid State Physics (Plenum, New York, 1972), p. 385; Norgett, M. J., Report R7650, AERE Harwell (1974).CrossRefGoogle Scholar
7Harding, J. H., Harker, A. H., Keegstra, P. B., Pandey, R., Vail, J. M., and Woodward, C., Physica (B + C) 131, 151 (1985).CrossRefGoogle Scholar
8Dick, B. G. and Overhauser, A. W., Phys. Rev. 112, 90 (1958).CrossRefGoogle Scholar
9Philips, J. C., Rev. Mod. Phys. 42, 317 (1970).CrossRefGoogle Scholar
10Sangster, M. J. L. and Stoneham, A. M., Philos. Mag. B 43, 597 (1981).CrossRefGoogle Scholar
11Yamashita, N., Jpn. J. Appl. Phys. 30, 1384 (1991).CrossRefGoogle Scholar
12Vail, J. M., Pandey, R., and Kunz, A. B., Rev. Solid State Sci. 5, 241 (1991).Google Scholar
13Weir, C. E., Phys. Rev. 108, 19 (1957).CrossRefGoogle Scholar
14Mackrodt, W. C. and Stewart, R. F., J. Phys. C 12, 5015 (1979).CrossRefGoogle Scholar