Article contents
Plasma enhanced chemical vapor deposition of silicon nitride films from a metal-organic precursor
Published online by Cambridge University Press: 03 March 2011
Abstract
Silicon nitride films are grown by plasma enhanced chemical vapor deposition from tetrakis(dimethylamido)silicon, Si(NMe2)4, and ammonia precursors at substrate temperatures of 200-400 °C. Backscattering spectrometry shows that the films are close to stoichiometric. Depth profiling by Auger electron spectroscopy shows uniform composition and no oxygen or carbon contamination in the bulk. The films are featureless by scanning electron microscopy under 100,000X magnification.
- Type
- Rapid Communications
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
1Proc. of the Symposium on Silicon Nitride Thin Insulating Films, edited by Kapoor, V.J. and Stein, H.J. (The Electrochemical Society, Pennington, NJ, 1983), Vol. 83–8 and references therein; Sze, S.M., VLSI Technology, 2nd ed. (McGraw-Hill, New York, 1988); Pierson, H. O., Handbook of Chemical Vapor Deposition (Noyes Publications, Park Ridge, NJ, 1992), p. 224.Google Scholar
2Doo, V. Y., Nichols, D. R., and Silvey, G. A., J. Electrochem. Soc. 113, 1279 (1966).Google Scholar
5Zhang, S-L., Wang, J-T., Kaplan, W., and Æstling, M., Thin Solid Films 213, 182 (1992).Google Scholar
8Lorenz, H., Eisele, I., Ramm, J., Edlinger, J., and Bühler, M., J. Vac. Sci. Technol. B9, 208 (1987).Google Scholar
9Schuh, H., Schlosser, T., Bissinger, P., and Schmidbaur, H., Z. Anorg. Allg. Chem. 619, 1347 (1993).Google Scholar
11Mikata, Y. and Moriya, T., Eur. Pat. Appl. EP 464, 515 (1991); JP Appl. 171, 156 (1990); Chem. Abstr. 116: 163137c (1992).Google Scholar
12Lukovsky, G., Tsu, D. V., Rudder, R. A., and Markunas, R. J., in Thin Film Processes II, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1991).Google Scholar
13Chu, W-K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978); Feldman, L. C. and Mayer, J. W., Fundamentals of Surfaces and Thin Film Analysis (North-Holland, New York, 1986).Google Scholar
15Richard, P. D., Markunas, R. J., Lucovsky, G., Fountain, G. G., Mansour, A. N., and Tsu, D. V., J. Vac. Sci. Technol. A3, 867 (1985).Google Scholar
16Hattangady, S. V., Fountain, G. G., Rudder, R. A., and Markunas, R. J., J. Vac. Sci. Technol. A7, 570 (1989).Google Scholar
19Claassen, W. A. P., Valkenburg, W.G.J.N., Willemsen, M. F. C., and Wijgert, W.M. v.d., J. Electrochem. Soc. 132, 893 (1985).Google Scholar
21Chow, R., Lanford, W. A., Ke-Ming, W., and Rosier, R. S., J. Appl. Phys. 53, 5630 (1982).Google Scholar
24Hoffman, D. M., Rangarajan, S. P., Athavale, S. D., Economou, D. J., Liu, J-R., Zheng, Z., and Chu, W-K., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), p. 3.Google Scholar
25For examples in which homoleptic transition metal amido complexes are used in PECVD processes to prepare nitride films, see Weber, A., Nikulski, R., and Klages, C-P., Appl. Phys. Lett. 63, 325 (1993); Wendel, H. and Suhr, H., Appl. Phys. A 54, 389 (1992).Google Scholar
- 9
- Cited by