Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T03:08:36.807Z Has data issue: false hasContentIssue false

Physical properties of nearly zero magnetostriction Co-rich glass-coated amorphous microwires

Published online by Cambridge University Press:  31 January 2011

A. F. Cobeño
Affiliation:
Dept. de Electrónica y Telecomunicaciones y Dept. de Física Aplicada I, Escuela Universitaria de Ingeniería Técnica Industrial, 20011, San Sebastián, Spain
A. Zhukov
Affiliation:
Dept. de Física de Materiales, Faculdad de Química, P.O. Box 1072, 20080, San Sebastián, Spain, and AmoTec LTD, Blvd. Dacia 15/78, Kishinev, Moldova
A. R. de Arellano-López
Affiliation:
Dept. de Física de Materiales, Faculdad de Química, P.O. Box 1072, 20080, San Sebastián, Spain, and AmoTec LTD, Blvd. Dacia 15/78, Kishinev, Moldova
F. Elías
Affiliation:
Dept. de Física de la Materia Condensada, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla, Spain
J. M. Blanco
Affiliation:
Dept. de Electrónica y Telecomunicaciones y Dept. de Física Aplicada I, Escuela Universitaria de Ingeniería Técnica Industrial, 20011, San Sebastián, Spain
V. Larin
Affiliation:
AmoTec LTD, Blvd. Dacia 15/78, Kishinev, Moldova
J. González
Affiliation:
Dept. de Física de Materiales, Faculdad de Química, P.O. Box 1072, 20080, San Sebastián, Spain
Get access

Abstract

Magnetic and mechanical properties of Co-rich amorphous microwires of nominal compositions (Co1–xMnx)75Si10 B15 (0.08 < x < 0.11) and Co56.5Fe6.5Ni10B16Si11 with nearly zero magnetostriction constant have been studied. Drastic changes of the hysteresis loop with the decrease of x from rectangular to flat shape were observed at x < 0.1, while the Co56.5Fe6.5Ni10B16Si11 microwire showed rectangular hysteresis loops. Compositions with x ≥ 0.1 have small but positive magnetostriction constant while negative λs values have been observed at x ≤ 4 0.09, indicating rectangular character of the hysteresis loop in samples with nearly zero and even for small negative λs. External stress dependence of switching field, H*, showed an increase of H*; with s for samples with x = 0.11 and a decrease of H* with σ for x = 0.1. Besides, microwires of the same composition but with different dimensions showed different H*(σ) dependencies.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Taylor, G.F., Phys. Rev. 24, 6555 (1924).Google Scholar
2.Zhukov, A., Vázquez, M., Velázquez, J., Chiriac, H., and Larin, V., J. Magn. Magn. Mater. 151, 132 (1995).CrossRefGoogle Scholar
3.González, J., Murillo, N., Larin, V., Barandiarán, J.M., Vázquez, M., and Hernando, A., IEEE Trans. Magn. 33, 2362 (1997).CrossRefGoogle Scholar
4.Catalan, C.F., Prida, V.M., Alonso, J., Vázquez, M., Zhukov, A., Hernando, B., and Velázquez, J., Rapidly Quenched and Metastable Materials, supplement to Mater. Sci. Eng. A, 438 (1997).Google Scholar
5.Chiriac, H., Ovari, T.A., and Pop, Gh., J. Magn. Magn. Mater. 157/158, 227 (1996).CrossRefGoogle Scholar
6.Nixdorf, J., Draht-Welt 53, 696 (1967).Google Scholar
7.Kraus, L., Schneider, J., and Wiesner, H., Czech. J. Phys. B26, 601 (1976).CrossRefGoogle Scholar
8.Goto, T., Trans. Jpn. Inst. Met. 21, 219 (1980).CrossRefGoogle Scholar
9.Gemperle, R., Kraus, L., and Schneider, J., Czech. J. Phys. B28, 1138 (1978).CrossRefGoogle Scholar
10.Zhukov, A., Vázquez, M., Velázquez, J., Hernando, A., and Larin, V., J. Magn. Magn. Mater. 170, 323 (1997).CrossRefGoogle Scholar
11.Velázquez, J., Vázquez, M., and Zhukov, A., J. Mater. Res. 11, 2499 (1996).CrossRefGoogle Scholar
12.Vázquez, M. and Zhukov, A., J. Magn. Magn. Mater. 160, 223 (1996).CrossRefGoogle Scholar
13.Baranov, S.A., Larin, V.S., Torcunov, A.V., Zhukov, A., and Vázquez, M., in Nanocrystalline and Non-Crystalline Materials, edited by Vázquez, M. and Hernando, A., (World Scientific, Singapore, 1995), p. 567.Google Scholar
14.Vázquez, M. and Hernando, A., J. Phys. D: Appl. Phys. 29, 939 (1996).CrossRefGoogle Scholar
15.González, J., Blanco, J.M., Vázquez, M., Barandiarán, J.M., Rivero, G., and Hernando, A., J. Appl. Phys. 70, 6522 (1991).CrossRefGoogle Scholar
16.Kulakowski, K., Gonzalez, J., and Aragoneses, P., J. Magn. Magn. Mater. 162, 355 (1996).CrossRefGoogle Scholar
17.Aragoneses, P., Blanco, J.M., Dominguez, L., González, J., Zhukov, A., and Vázquez, M., J. Phys. D: Appl. Phys. 31, 3040 (1998).CrossRefGoogle Scholar
18.Zhukov, A., Gómez-Polo, C., Crespo, P., and Vázquez, M., J. Magn. Magn. Mater. 157/158, 143 (1996).CrossRefGoogle Scholar
19.Mitra, A. and Vázquez, M., J. Appl. Phys. 67, 4986 (1990).CrossRefGoogle Scholar
20.Vázquez, M., Fernengel, W., and Kronmüller, H., Phys. Status Solidi (A) 80, 195 (1983).CrossRefGoogle Scholar
21.Barandiarán, J.M., Hernando, A., Madurga, V., Nielsen, O.V., Vázquez, M., and Vázquez-López, M., Phys. Rev. B 35, 5066 (1987).CrossRefGoogle Scholar
22.Blanco, J.M., Barbon, P.G., González, J., Gomez-Polo, C., and Vázquez, M., J. Magn. Magn. Mater. 104–107, 137 (1992).CrossRefGoogle Scholar
23.Gonzalez, J., Kulakowski, K., Aragoneses, P., Blanco, J.M., and Irurieta, E., J. Mater. Sci. 30, 5173 (1995).CrossRefGoogle Scholar
24.Garcia Prieto, M.J., Pina, E., Zhukov, A.P., Larin, V., Marin, P., Vázquez, M., and Hernando, A., Sens. Actuators, A (in press).Google Scholar