Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T04:52:53.788Z Has data issue: false hasContentIssue false

Photoluminescence intensity of GaN films with widely varying dislocation density

Published online by Cambridge University Press:  31 January 2011

Yue Jun Sun*
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Oliver Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Klaus H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
*
a)Address all correspondence to this author. e-mail: [email protected].
Get access

Abstract

We investigated the impact of the presence of dislocations on room-temperature photoluminescence intensity in GaN films grown by molecular beam epitaxy. To determine both screw and edge dislocation densities, we employed x-ray diffraction in conjunction with a geometrical model, which relate the width of the respective reflections to the polar and azimuthal orientational spread. There is no direct dependence of the emission efficiency on the density of either type of dislocation in the samples under investigation. We conclude that dislocations are not the dominant nonradiative recombination centers for GaN grown by molecular beam epitaxy.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A., Appl. Phys. Lett. 66, 1249 (1995).CrossRefGoogle Scholar
2.Mukai, T., Takekawa, K., and Nakamura, S., Jpn. J. Appl. Phys. 37, 839 (1998).CrossRefGoogle Scholar
3.Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).CrossRefGoogle Scholar
4.Elsner, J., Jones, R., Heggie, M.I., Sitch, P.K., Haugk, M., Frauenheim, T., Öberg, S., and Briddon, P.R., Phys. Rev. B 58, 12571 (1998).CrossRefGoogle Scholar
5.Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, T., Heggie, M.I., Öberg, S., and Briddon, P.R., Phys. Rev. Lett. 79, 3672 (1997).CrossRefGoogle Scholar
6.Cherns, D., Henley, S.J., and Ponce, F.A., Appl. Phys. Lett. 78, 2691 (2001).CrossRefGoogle Scholar
7.Shi, J.Y., Yu, L.P., Wang, Y.Z., Zhang, G.Y., and Zhang, H., Appl. Phys. Lett. 80, 2293 (2002).CrossRefGoogle Scholar
8.Brandt, O., Muralidharan, R., Waltereit, P., Thamm, A., Trampert, A., Kiedrowski, H. von, and Ploog, K.H., Appl. Phys. Lett. 75, 4019 (1999).CrossRefGoogle Scholar
9.Lee, C.D., Sager, A., Feenstra, R.M., Inoki, C.K., Kuan, T.S., Sarney, W.L., and Salamanca-Riba, L., Appl. Phys. Lett. 79, 3428 (2001).CrossRefGoogle Scholar
10.Ng, H.M., Doppalapudi, D., Moustakas, T.D., Weimann, N.G., and Eastman, L.F., Appl. Phys. Lett. 73, 821 (1998).CrossRefGoogle Scholar
11.Metzger, T., Ho¨pler, R., Born, E., Ambacher, O., Stutzmann, M., Sto¨mmer, R., Schuster, M., Go¨bel, H., Christiansen, S., Albrecht, M., et al., Philos. Mag. A 77, 1013 (1998).Google Scholar
12.Kirchner, V., Fehrer, M., Figge, S., Heinke, H., Einfeldt, S., Hommel, D., Selke, H., and Ryder, P.L., Phys. Status Solidi B 216, 659 (1999).3.0.CO;2-T>CrossRefGoogle Scholar
13.Gay, P., Hirsch, P.B., and Kelly, A., Acta Metall. 1, 315 (1953).CrossRefGoogle Scholar
14.Dunn, C.O. and Koch, E.F., Acta Metall. 5, 548 (1957).CrossRefGoogle Scholar
15.Srikant, V., Speck, J.S., and Clarke, D.R., J. Appl. Phys. 82, 4286 (1997).CrossRefGoogle Scholar
16.Sun, Y.J., Brandt, O., Liu, T.Y., Trampert, A., Ploog, K.H., Bla¨sing, J., and Krost, A., Appl. Phys. Lett. 81, 4928 (2002).CrossRefGoogle Scholar
17.Grundmann, M., Christen, J., Bimberg, D., Fischer-Colbrie, A., and Hull, R., J. Appl. Phys. 66, 2214 (1989).CrossRefGoogle Scholar
18.Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, K., Nishino, K., and Romano, S.S.L.T., Jpn. J. Appl. Phys. 37, 398 (1998).CrossRefGoogle Scholar
19.Gonzalez, J.C., Bunker, K.L., and Russell, P.E., Appl. Phys. Lett. 79, 1567 (2001).CrossRefGoogle Scholar
20.Zhang, X., Kung, P., Walker, D., Piotrowski, J., Rogalski, A., Samler, A., and Razeghi, M., Appl. Phys. Lett. 67, 2028 (1995).CrossRefGoogle Scholar
21.Hersee, S.D., Ramer, J., and Malloy, K.J., MRS Bull. 7, 54 (1997).Google Scholar
22.Ding, J., Chang, J.S.C., and Bujatti, M., Appl. Phys. Lett. 50, 1089 (1987).CrossRefGoogle Scholar
23.Kang, N.S., Zirkle, T.E., and Schroder, D.K., J. Appl. Phys. 72, 82 (1992).CrossRefGoogle Scholar
24.Weyher, J.L., Albreht, M., Wosin´ski, T., Nowak, G., Strunk, H.P., Porowski, S., Mater. Sci. Eng. B 80, 318 (2001).CrossRefGoogle Scholar
25.Lei, H., Leipner, H.S., Shreiber, J., Weyher, J.L., Wosin´ski, T., and Grzegory, I., J. Appl. Phys. 92, 6666 (2002).CrossRefGoogle Scholar