Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T10:23:57.287Z Has data issue: false hasContentIssue false

Phase transition and the soft lattice mode of a perovskite crystal studied by Raman scattering and thermal measurements

Published online by Cambridge University Press:  31 January 2011

H. R. Xia
Affiliation:
Department of Physics and National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
L. X. Li
Affiliation:
Experimental Center, Shandong University, Jinan 250100, People's Republic of China
J. Q. Wei
Affiliation:
Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
J. Y. Wang
Affiliation:
Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Z. H. Yang
Affiliation:
Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Q. C. Guan
Affiliation:
Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
W. L. Jiang
Affiliation:
Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Get access

Abstract

The paraelectric–ferroelectric structural transition of potassium lithium tantalite niobate has been studied by both Raman scattering and thermal measurements. A condensed soft lattice vibrational mode at the phase transition has been analyzed. It originates from the symmetric O2/O3–Nb/Ta–O3/O2 in-plane bending of the Nb/TaO6 group. The soft optical phonon mode concerns the extraordinary transverse optical phonons propagating along the [1 1 0] direction. The thermal expansion experiments show a displacive phase transition and a big thermal contraction in the c direction of the crystal, with an average linear expansion coefficient αc = −4.52 × 10−5 K−1. The phase transition temperature and enthalpy are 358 K and 0.50 J/g, respectively. Curie temperature measured by four methods is within 353 and 360 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Slater, J.C., Phys. Rev. 78, 748 (1950).CrossRefGoogle Scholar
2.Cochran, W., Adv. Phys. 9, 387 (1960).CrossRefGoogle Scholar
3.Cowley, R.A., Phys. Rev. 134, A981 (1964).CrossRefGoogle Scholar
4.Triebwasser, S., Phys. Rev. 114, 63 (1959).CrossRefGoogle Scholar
5.Hewat, A.W., J. Phys. C: Solid State Phys. 6, 1074 and 2559 (1973).CrossRefGoogle Scholar
6.Lanzi, G., Milani, P., Samoggia, G., Maglione, M., and Hochli, U.T., Phys. Rev. B: Condensed. Matter 36, 1233 (1987).CrossRefGoogle Scholar
7.Barker, A.S. Jr and Tinkham, M., Phys. Rev. 125, 1527 (1962).CrossRefGoogle Scholar
8.Spitzer, W.G., Miller, R.C., Kleinman, D.A., and Howarth, L.E., Phys. Rev. 126, 1710 (1962).CrossRefGoogle Scholar
9.Wang, J., Ma, X., Zhang, S., Hu, W., Zhao, Z., Zhang, X., Xu, J., and Guan, Q., Cryst. Res. Technol. 28, 457 (1993).CrossRefGoogle Scholar
10.Hu, Z.W., Jiang, S.S., Feng, D., Wang, J.Y., Guan, Q.C., Liu, Y.G., and Jiang, J.H., Acta Phys. Sinica 43, 1997 (1994).Google Scholar
11.Lian, Y.W., Gao, H., Ye, P.X., Guan, Q.C., and Wang, J.Y., Appl. Phys. Lett. 63, 1745 (1993).CrossRefGoogle Scholar
12.Wang, J.Y., Guan, Q.C., Liu, Y.G., Wei, J.Q., Wang, D.D., Lian, Y.W., Yang, H.G., and Ye, P.X., Appl. Phys. Lett. 61, 2761 (1992).CrossRefGoogle Scholar
13.Wei, J.Q., Wang, J.Y., Guan, Q.C., and Liu, Y.G., Cryst. Res. Technol. 28, 449 (1993).CrossRefGoogle Scholar
14.Agranat, A., Hofmeister, R., and Yariv, A., Opt. Lett. 17, 713 (1992).CrossRefGoogle Scholar
15.Fukuda, T., Hirano, H., and Koide, S., J. Cryst. Growth 6, 293 (1970).CrossRefGoogle Scholar
16.Zhong, S.D., Progr. Cryst. Growth Charact. 20, 161 (1990).CrossRefGoogle Scholar
17.Buffat, Ph., Ganiere, D., Rappaz, M., and Rytz, D., J. Cryst. Growth 74, 353 (1986).CrossRefGoogle Scholar
18.The International Tables for Crystallography, Vol. A: Space-Group Symmetry, edited by T. Hahn (D. Reidel, Dordrecht, Holland and Boston, MA, 1983).Google Scholar
19.Loudon, R., Adv. Phys. 13, 423 (1964); errata: Adv. Phys. 14, 621 (1965).CrossRefGoogle Scholar
20.Liu, S.M. and Zhang, G.Y., Acta Phys. Sinica 32, 657 (1983).Google Scholar
21.Merten, L., Naturforschung, Z. 22a, 359 (1967).CrossRefGoogle Scholar
22.Xia, H.R., Chen, H.C., Yu, H., Hu, L.J., Wang, K.X., and Zhao, B.Y., Phys. Rev. B: 54, 8954 (1996).CrossRefGoogle Scholar
23.Boudou, A. and Sapriel, J., Phys. Rev. B: 21, 61 (1980).CrossRefGoogle Scholar
24.Xia, H.R., Yu, H., Yang, H., Wang, K.X., Zhao, B.Y., Wei, J.Q., Wang, J.Y., and Liu, Y.G., Phys. Rev. B: 55, 14892 (1997).Google Scholar
25.Schaufele, R.F. and Weber, M.J., Phys. Rev. 152, 705 (1966).Google Scholar
26.Xia, H.R., Wang, C.J., Yu, H., Chen, H.C. and Wang, M., J. Appl. Phys. 82, 4465 (1997).CrossRefGoogle Scholar
27.Pytte, E., Phys. Rev. B: Solid State 5, 3758 (1972).CrossRefGoogle Scholar