Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T11:44:18.439Z Has data issue: false hasContentIssue false

Phase transformations in Ti3Al and Ti3Al + Mo aluminides

Published online by Cambridge University Press:  31 January 2011

S. Djanarthany
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
C. Servant
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
R. Penelle
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
Get access

Abstract

We have analyzed the phase relationships in two titanium aluminides containing 3.4 at. % Mo with different aluminum compositions. The alloys were first homogenized in the β field, then cooled continuously at different cooling rates from 80 °C/s to 0.1 °C/s. The continuous cooling transformation diagrams (CCT) show that phase transformations and resulting microstructures are highly dependent on cooling rate. The microstructure consists of ordered α2 (DO19), ordered β0 (B2), and athermal ω (hexagonal) phases. The “tweed microstructure” is observed. The evolution of microhardness was determined as well as the relative partitioning of Al and Mo in (α2', α2) and β0 phases as a function of cooling rate.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lipsitt, H., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 351.Google Scholar
2Blackburn, M. J. and Smith, M. P., “Research to Conduct an Exploratory Experimental and Analytical Investigation of Alloys,” AFWAL-TR-81–4046, Interim. Tech. Rept. May 1977-Dec 1978, Contract No. F33615–75C-1167, June 1981.Google Scholar
3Blackburn, M. J. and Smith, M. P., “Titanium alloys of the Ti3Al type,” Patent, U. S. No. 4292077, Sept. 29, 1981.Google Scholar
4Sastry, S. M. L. and Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985).Google Scholar
5Anthony, L. and Fultz, B., J. Mater. Res. 4, 1132 (1989).CrossRefGoogle Scholar
6Banerjee, D., Nandy, T. K., Gogia, A. K. and Muraleedharan, K., “Microstructure and Phase Relations in the Ti3Al-Nb System,” Proc. Sixth World Conference on Titanium, edited by Lacombe, P., Tricot, R., and Beranger, G., Cannes, France, June 1988 (Société Française de Métallurgie, Les éditions de physique, Les Ulis, France, 1989).Google Scholar
7Banerjee, D., Gogia, A. K., Nandy, T. K. and Joshi, V. A., Acta Metall. 36, 871 (1988).CrossRefGoogle Scholar
8Kaufman, M. J., Broderick, T. F., Ward, C. H., Kim, J. K., Rowe, R. G. and Froes, F. H., “Phase Relationships in the Ti3Al-Nb System,” Proc. Sixth World Conference on Titanium, edited by Lacombe, P., Tricot, R., and Beranger, G., Cannes, France, June 1988 (Société Française de Métallurgie, Les éditions de physique, Les Ulis, France, 1989).Google Scholar
9Strychor, R., Williams, J. C. and Soffa, W. A., Metall. Trans. A 19A, 225 (1988).CrossRefGoogle Scholar
10Sastry, S. M. L. and Lipsitt, H. A., Metall. Trans. A 8A, 1543 (1977).CrossRefGoogle Scholar
11Sundaresan, R. and Froes, F. H., “Titanium Intermetallics Development through Mechanical Alloying,” Proc. Sixth World Conference on Titanium, edited by Lacombe, P., Tricot, R., and Beranger, G., Cannes, France, June 1988 (Société Française de Métallurgie, Les éditions de physique, Les Ulis, France, 1989).Google Scholar
12Rowe, R. G., “Recent Developments in Ti-Al-Nb Titanium Aluminide Alloys,” in High-Temperature Aluminides and Intermetallics, ASM/TMS-AIME, Symp. Proc, Indianapolis, Oct. 1989.Google Scholar
13Delaey, L., Perkins, A. J. and Massalski, T. B., J. Mater. Sci. 7, 11971215 (1972).CrossRefGoogle Scholar
14Michal, G. M., Moine, P. and Sinclair, R., Acta Metall. 30, 125138 (1982).CrossRefGoogle Scholar
15Moine, P., Michal, G. M. and Sinclair, R., Acta Metall. 30, 109123 (1982).CrossRefGoogle Scholar
16Manoubi, T., Thèse de Doctorat troisième cycle, Université d'Orsay, 1978.Google Scholar
17Banerjee, D., Rhodes, C. D. and Williams, J. C., “On the Nature of α/β Interfaces in Titanium Alloys”, Proc. Fifth Int. Conf. on Titanium, edited by G. L¨tjering, Zwicker, J., and Bunk, W., Munich, Germany, 1984, p. 1597.Google Scholar
18Banerjee, D. and Arunchalam, V. S., Acta Metall. 29, 16851694 (1981).CrossRefGoogle Scholar
19Banerjee, D. and Williams, J. C., Scripta Metall. 17, 11251128 (1983).CrossRefGoogle Scholar
20Moody, N. R., Greulich, F. A. and Robinson, S. L., Metall. Trans. A 15A, 1955 (1984).CrossRefGoogle Scholar
21Servant, C. (in press).Google Scholar
22Rowe, R. G., Hall, E. L., Scarr, G. K., Koch, E. F. and Garbauskas, M. F., “Microstructure and Properties of the Titanium Aluminide Ti2AlNb,” in High-Temperature Aluminides and Intermetallics, ASM, TMS-AIME, Symp. Proc, Indianapolis, 1989.Google Scholar
23Weykamp, H. T., Baker, D. R., Paxton, D. M. and Kaufman, M. J., Scripta Metall. 24, 445450 (1990).CrossRefGoogle Scholar
24Jackson, A. G., Teal, K. and Froes, F. H., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1986).Google Scholar