Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T05:37:42.320Z Has data issue: false hasContentIssue false

Phase transformations in rapid thermal processed lead zirconate titanate

Published online by Cambridge University Press:  03 March 2011

Ellen M. Griswold
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada, K7L 3N6
L. Weaver
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada, K7L 3N6
M. Sayer
Affiliation:
Department of Physics, Queen's University, Kingston, Ontario, Canada, K7L 3N6
I.D. Calder
Affiliation:
Telecom Microelectronics Centre, Northern Telecom Ltd., Nepean, Ontario, Canada
Get access

Abstract

The crystallization kinetics of the pyrochlore to perovskite phase transformation in lead zirconate titanate (PZT) thin films have been analyzed using rapid thermal processing (RTP). Sol-gel PZT thin films, fabricated on platinum electrodes, were annealed at 550 °C to 650 °C with hold times ranging from 1 s to 5 min. Glancing angle x-ray diffraction (XRD) was used for depth profiling to identify the location of phases in the films. Transmission electron microscopy (TEM) provided information on grain structure, nucleation, and growth. The phase information was correlated to the ferroelectric and dielectric properties. The perovskite phase nucleated in the pyrochlore phase throughout the film thickness, and at 650 °C the transformation was complete in 15 s. Fast growing (100) PZT nucleated at the platinum and consumed a small-grained matrix until a columnar structure was obtained. A ramp rate of 100 °C/s was sufficiently fast to prevent transformation during heating and allowed the direct application of an Avrami model for transformation kinetics. An activation energy of 610 kJ/mol was determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993).Google Scholar
2Al-Shareef, H. N., Kingon, A. I., Chen, X., Bellur, K. R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
3Klee, M., Eusemann, R., Waser, R., Brand, W., and Hal, H. van, J. Appl. Phys. 72 (4), 1566 (1992).CrossRefGoogle Scholar
4Reany, I. M., Brooks, K., Klissurska, R., Pawlaczyk, C., and Setter, N., J. Am. Ceram. Soc. 77 (5), 1209 (1994).CrossRefGoogle Scholar
5Ramesh, R., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 63 (6), 731 (1993).CrossRefGoogle Scholar
6Tuttle, B., Voigt, J. A., Goodnow, D. C., Lamppa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Am. Ceram. Soc. 76 (6), 1537 (1993).CrossRefGoogle Scholar
7Kingon, A.et al., in Proceedings of NATO Advanced Studies Workshop on Ferroelectric Thin Films, Italy, lune 1994.Google Scholar
8Lee, J. S., Ki, C. J., Yoon, D. S., Ckoi, C. G., Kim, J. M., and No, K., Jpn. J. Appl. Phys. 33, 260 (1994).CrossRefGoogle Scholar
9Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
10Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77 (5), 1242 (1994).CrossRefGoogle Scholar
11Griswold, E. M., Sayer, M., and Weaver, L., in Proceedings of the 6th International Symposium on Integrated Ferroelectrics (ISIF 94), Monterey, CA, 1994, J. Integrated Ferroelectrics 8, 109 (1995).CrossRefGoogle Scholar
12Hu, H., Peng, C. J., and Krupanidhi, S. B., Thin Solid Films 223, 327 (1993).CrossRefGoogle Scholar
13Vasant Kumar, C. V. R., Pascual, R., and Sayer, M., J. Appl. Phys. 71 (2), 864 (1992).CrossRefGoogle Scholar
14Sayer, M, in Proceedings of 3rd International Symposium on Integrated Ferroelectrics (ISIF 91), Colorado Springs, CO (April 1991), p. 1.Google Scholar
15Sayer, M and Sedlar, M., in Proceedings of 6th International Symposium on Integrated Ferroelectrics (ISIF 94), Monterey, CA, March 1994, J. Integrated Ferroelectrics 6, 129 (1995).Google Scholar
16Weaver, L., J. Res. Micros. Techniques (1995, in press).Google Scholar
17Chen, S. and Chen, I., J. Am. Ceram. Soc. 77 (9) 2332 (1994).CrossRefGoogle Scholar
18Kim, C. K., Yoon, D. S., Lee, J. S., Choi, C. G., and No, K., Jpn. J. Appl. Phys. 33, 2675 (1994).CrossRefGoogle Scholar
19Dang, E. K. F. and Gooding, R. J., Phys. Rev. Lett. 74, 3848 (1995).CrossRefGoogle Scholar
20Sreenivas, K., Reany, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R. G., J. Appl. Phys. 75 (1), 232 (1994).CrossRefGoogle Scholar
21Griswold, E. M., Sayer, M., Amm, D. T., and Calder, I. D., Can. J. Phys. 69, 260 (1991).CrossRefGoogle Scholar
22Avrami, M., Chem. Phys. 7 (12), 1103 (1939).Google Scholar
23Ranganathan, S. and von Heimendahl, M., J. Mater. Sci. 16, 2401 (1981).CrossRefGoogle Scholar
24Kwok, C. K. and Desu, S. B., Ferroelectric Films, edited by Balla, A. S. and Nair, K. M. (Ceram. Trans. 25, American Ceramics Society, Westerville, OH, 1992), p. 85.Google Scholar
25Voigt, J. A., Turtle, B. A., Headly, T. J., Eatough, M. O., Lamppa, D. L., and Goodnow, D., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 15.Google Scholar
26Griswold, E. M., Weaver, L., Calder, I. D., and Sayer, M., in Ferroelectric Thin Films IV, edited by Desu, S. B., Tuttle, B. A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361–C5, Pittsburgh, PA, 1995), p. 389.Google Scholar