Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T13:18:04.524Z Has data issue: false hasContentIssue false

Phase transformation of poly (vinylidene difluoride) in energy harvesting

Published online by Cambridge University Press:  12 January 2011

Hong Liang*
Affiliation:
Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123
Rodrigo Cooper
Affiliation:
Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123
Jason Files
Affiliation:
Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The poly (vinylidene difluoride) (PVDF) has been of great interest for energy conversion of microelectromechanical system devices. A semicrystalline polymer, the PVDF has five crystallographic forms, α, β, γ, δ, and ε. The latter four structures exhibit a permanent dipole moment. In this research, we investigated effects of microstructures of the PVDF on its piezoelectricity for energy harvesting. Using various experimental techniques, we observed the power density generated by a mechanical force that was correlated with the phase transformation between amorphous, α, β, and γ phases. The transformation was time-dependent in a nonlinear manner. Such transformation influences the energy transition and storage of small devices.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kawaii, H.: The piezoelectricity of polyvinylidene fluoride. Jpn. J. Appl. Phys. 8, 975 (1969).CrossRefGoogle Scholar
2.Nix, E.L. and Ward, I.M.: The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride. Ferroelectrics 67, 137 (1986).CrossRefGoogle Scholar
3.Broadurst, M.G., Mlmerg, C.G., Mopsik, F.I., and Harris, W.P.: Piezo- and pyroelectricity in polymer electrets, Electrets: Charge Storage and Transport in Dieelectrics, edited by Perlman, M.M. (The Electrochemical Society, Inc., Princeton, NJ, 1973), pp. 492504.Google Scholar
4.Broadhurst, M.G., Harris, W.P., Mopsik, F.I., and Malmberg, C.G.: Piezoelectricity, pytroelectricity and electrostriction in polymers, Prepr. Amer. Chem. Soc. Div., Poly Chem. 14, 820 (1973).Google Scholar
5.Mopsik, F.I. and Broadhurst, M.G.: Molecular dipole electrets. J. Appl. Phys. 46, 4204 (1975).CrossRefGoogle Scholar
6.Hayakawa, R. and Wada, Y.: Piezoelectricity and related properties of polymer films. Adv. Polym. Sci. 11, 1 (1973).CrossRefGoogle Scholar
7.Broadhurst, M.B., Davis, G.T., McKiney, J.E., and Collins, E.: Piezoelectricity and pyroelectricity in polyvinliden fluoride: A model. J. Appl. Phys. 49, 4992 (1978).CrossRefGoogle Scholar
8.Furukawa, T., Wen, J.X., Suzuki, K., Takashina, T., and Date, M.: Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroehylene copolymers. J. Appl. Phys. 25, 1178 (1986).CrossRefGoogle Scholar
9.Fukada, E.: History and recent progresss in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277 (2000).CrossRefGoogle Scholar
10.Ohigashi, H. and Shigenari, R.: Jpn. Patent Application 47-128115, 1972.Google Scholar
11.Sussner, H., Michas, D., Assflay, A., Hunklinger, S., and Dransfeld, K.: Piezoelectric effect in polyvinylidene fluride at high frequencies. Phys. Lett. A 45, 475 (1973).CrossRefGoogle Scholar
12.Powers, J.M.: Long Range Hydrophones, The Applications of Ferroelectric Polymers, edited by Wang, T.T., Herbert, J.M., and Glass, A.M. (Glasgov, Scotland, Blackie, 1988), pp. 118161.Google Scholar
13.Tamura, M., Yamaguchi, T., Oyaba, T., and Yoshimi, T.: Electroacoustic transducers with piezoelectric high polymer films. J. Audio Eng. Soc. 23, 21 (1975).Google Scholar
14.Yamaka, E.: Pyroelectric devices, The Application of Ferroeletric Polymers, edited by Wang, T.T., Herert, M., and Glass, A.M. (Glasgov, Scotland, Blackie, 1988), pp. 29348.Google Scholar
15.Fang, H-B., Liu, J-Q., Xu, Z-Y., Dong, L., Wang, L., Chen, D., Cai, B-C., and Liu, Y.: Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 37(11), 1280 (2006).CrossRefGoogle Scholar
16.Sohn, J., Choi, J.S., and Lee, D.: An investigation on piezoelectric energy harvesting for MEMS power sources. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 219(4), 429 (2005).CrossRefGoogle Scholar
17.Williams, C.B. and Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators, A 52(1–3), 8 (1996).CrossRefGoogle Scholar
18.Dutoit, N.E., Wardle, B.L., and Kim, S-G.: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71(1), 121 (2005).CrossRefGoogle Scholar
19.Hausler, E. and Stein, E.: Implantable physiological power supply with PVDF film. Ferroelectrics 60, 277 (1984).CrossRefGoogle Scholar
20.Curie, J. and Curie, P.: Comput. Rend. Acad. Sci., 91, 294 (1880). English translation by W.F. Magie, A Source Book in Physics (Harvard University, Cambridge, MA, 1963), pp. 548–549.Google Scholar
21.Curie, M., Curie, P., Kellog, C., and Kellogg, V.: With the Autobiographical Notes of Marie Curie (transl.) (Macmillan, New York, 1923) (reprinted Dover, New York, 1963), pp. 20–21.Google Scholar
22.Bruzau, M.: Piezoelectric substances. Elec. Commun. 23, 445 (1947).Google Scholar
23.Gautschi, G.: Piezoelectric Sensorics (Springer, Berlin, 2002).CrossRefGoogle Scholar
24.Wang, T.T., Herbert, J.M., and Glass, A.M.: The Applications of Ferroelectric Polymer (Blackie, New York, 1988).Google Scholar
25.Arnau, A.: Piezoelectric Transducers and Applications (Springer, Berlin, 2004).CrossRefGoogle Scholar
26.Singh, J.: Smart Electronic Materials (Cambridge University Press, Cambridge, 2005).CrossRefGoogle Scholar
27.Yoo, M., Frank, C.W., Mori, S., and Yamaguchi, S.: Interaction of Poly(vinylidene fluoride) with Graphite Particles. 1. Surface Morphology of a Composite Film and Its Relation to Processing Parameters. Chem. Mater. 16, 1945 (2004).CrossRefGoogle Scholar
28.Lee, H., Mika, B., Cooper, R., and Liang, H.: Nanoscale investigation of microstructure-piezoelectricity-surface force relations, in Proc. STLE/ASME Int. Trib. Conf., San Diego, CA, 2007.Google Scholar
29.Mika, B., Lee, H., González, J.M., Vinson, S.B., and Liang, H.: Studying insect motion with piezoelectric sensors, in Proceedings of SPIE Conference, Nanosensors, Microsensors, and Biosensors and Systems, edited by Varadan, V.K., Vol. 6528, April, 2007, p. 652817.Google Scholar
30.Jee, T., Lee, H., Mika, B., and Liang, H.: Effects of microstructures of PVDF on surface adhesive forces. Tribol. Lett. 26(2), 125 (2007).CrossRefGoogle Scholar
31.Lee, H., Cooper, R., Wang, K., and Liang, H.: Nano-scale characterization of a piezoelectric polymer (polyvinylidene difluoride, PVDF). Sensors 8(11), 7359 (2008).CrossRefGoogle ScholarPubMed
32.Yi, J. and Liang, H.: Modeling of a PVDF-based deformation and motion sensor. IEEE J. Sens. 8(4), 384 (2008).Google Scholar
33.Lee, H., Cooper, R., Mika, B., Clayton, D., Garg, R., González, J.M., Vinson, S.B., Khatri, S., and Liang, H.: Polymeric sensors to monitor cockroach locomotion. IEEE J. Sens. 7(12), 1698 (2007).CrossRefGoogle Scholar
34.Wang, K., Lee, H., Cooper, R., and Liang, H.: Time-resolved, stress-induced, and anisotropic phase transformation of a piezoelectric polymer. Appl. Phys., A: Mater. Sci. Process. 95, 435 (2009).CrossRefGoogle Scholar
35.Wang, T.T., Herbert, J.M., and Glass, A.M.: The Applications of Ferroelectric Polymer (Blackie, New York, 1988).Google Scholar
36.Hasegawa, R., Takahashi, Y., Chatani, Y., and Tadakoro, H.: Crystal structures of three crystalline forms of poly (vinylidene fluoride). Polym. J. 2, 600 (1972).CrossRefGoogle Scholar
37.Bachman, M.A. and Lando, J.B.: A reexamination of the crystal structure of phase II of poly (vinylidene fluoride). Macromolecules 14, 40 (1981).CrossRefGoogle Scholar
38.Weinhold, S., Litt, M.H., and Lando, J.B.: Human powered piezoelectric batteries to supply power to wearable electronic devices. Macromolecules 13, 1178 (1980).CrossRefGoogle Scholar
39.Gonzalez, J.L., Rubio, A., and Moll, F.: Human powered piezoelectric batteries to supply power to wearable electronic devices. Int. J. Soc. Mater. Eng. Resour. 10, 34 (2002).CrossRefGoogle Scholar
40.Hausler, E. and Stein, E.: Implantable physiological power supply with PVDF film. Ferroelectrics 60, 277 (1984).CrossRefGoogle Scholar
41.Ramsey, M.J. and Clark, W.W.: Piezoelectric energy harvesting for bio MEMS applications, in Proceedings SPIE 8th Annual Smart Materials and Structures Conference, Vol. 4332-2001, Newport Beach, CA, 2001, pp. 29438.Google Scholar
42.Curtin, T., Bellingham, J., Catopovic, J., and Wedd, D.: Autonomous oceanographic sampling networks. Oceanography (Wash. DC) 6(3), 86 (1993).CrossRefGoogle Scholar
43.Taylor, G.W., Burns, R.R., Kammann, S.M., Powers, W.B., and Welsh, T.R.: The energy harvesting, Eel: A small subsurface ocean/river power generator. IEEE J. Oceanic Eng. 26(4), 539 (2001).CrossRefGoogle Scholar
44.Williams, R.B., Park, G., Inman, D.J., and Wilkie, W.K.: An overview of composite actuators with piezoceramic fibers, in Proceedings IMAC-XX: Conference on Structural Dynamics, Los Angeles, CA, 2002.Google Scholar
45.Cass, R.B., Khan, A., and Mohammadi, F.: Innovative ceramic-fiber technology energizes advanced ceramics. Am. Ceram. Soc. Bull. 82, 14 (2003).Google Scholar
46.Mohammadi, F., Khan, A., and Cass, R.B.: Power generation from piezoelectric lead zirconate titanate fiber composites, in Electronics on Unconventional Substrates–Electrotextiles and Giant-Area Flexible Circuits, edited by Shur, M.S., Wilson, P.M., and Urban, D. (Mater. Res. Soc. Symp. Proc. 736, Warrendale, PA, 2003), D5.5, p. 263.Google Scholar
47.Mani, S., Perez, R., Lee, H., Ounaies, Z., Hung, W., and Liang, H.: Effects of applied potential on friction of a piezoelectric material. J. Tribol. 129(4), 836 (2007).CrossRefGoogle Scholar
48.Kochervinskii, V.: Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review). Crystallogr. Rep. 48(4), 649 (2003).CrossRefGoogle Scholar
49.Sirohi, J. and Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11(4), 246 (2000).CrossRefGoogle Scholar
50.Wang, Z-Y., Fan, H-Q., Su, K-H., X, Wang, and Wen, Z-Y.: Structure, phase transition and electric properties of poly(vinylidene fluoride-trifluoroethylene) copolymer studied with density-functional theory. Polymer (Guildf.) 48(11), 3226 (2007).CrossRefGoogle Scholar