Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T02:23:43.746Z Has data issue: false hasContentIssue false

Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame

Published online by Cambridge University Press:  31 January 2011

Sheryl H. Ehrman*
Affiliation:
Air Quality and Aerosol Technology Laboratory, Department of Chemical Engineering, 5531 Boelter Hall, University of California, Los Angeles, California 90095
Sheldon K. Friedlander
Affiliation:
Air Quality and Aerosol Technology Laboratory, Department of Chemical Engineering, 5531 Boelter Hall, University of California, Los Angeles, California 90095
Michael R. Zachariah
Affiliation:
Chemical and Science Technology Laboratory, Building 221, Room B312, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle (diameter < 100 nm) aerosols of varying mole ratios of Ti or Fe to Si were generated in a premixed Bunsen-type aerosol flame reactor. The distribution of species within the particles was investigated using transmission electron microscopy, electron energy loss spectrometry, x-ray diffraction, and Fourier transform infrared spectroscopy. Phase segregation was observed to varying degrees in qualitative agreement with segregation expected from binary phase diagrams for the bulk systems. Differences between the SiO2/TiO2 and SiO2/Fe2O3 systems can be explained by considering the variation in the thermodynamically stable liquid-phase solubility and differences in the ability of iron and titanium ions to substitute for silicon ions in the network structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ulrich, G.D., Chem. Eng. News, Aug 8 (1984).Google Scholar
2.Izawa, T. and Sudo, S., Optical Fibers: Materials and Fabrication (KTK Scientific Publishers, Tokyo, 1987).Google Scholar
3.Ulrich, G.D. and Subramanian, N.S., Combust. Sci. Technol. 17, 119 (1977).CrossRefGoogle Scholar
4.Koch, W. and Friedlander, S.K., J. Colloid Interface Sci. 140, 419 (1990).CrossRefGoogle Scholar
5.Friedlander, S.K. and Wu, M.K., Phys. Rev. B 49, 3622 (1994).CrossRefGoogle Scholar
6.Helble, J.J. and Sarofim, A.P., J. Colloid Interface Sci. 128, 348 (1989).CrossRefGoogle Scholar
7.Wu, M.K., Windeler, R.S., Steiner, C.K.R, Börs, T., and Friedlander, S.K., Aerosol Sci. Technol. 19, 527 (1993).Google Scholar
8.Xiong, Y., Akhtar, M.K., and Pratsinis, S.E., J. Aerosol Sci. 24, 301313 (1993).CrossRefGoogle Scholar
9.Windeler, R.S., Lehtinen, K.E.J, and Friedlander, S.K., Aerosol Sci. Technol. 27, 174 (1997).CrossRefGoogle Scholar
10.Windeler, R.S., Lehtinen, K.E.J, and Friedlander, S.K., Aerosol Sci. Technol. 27, 191 (1997).CrossRefGoogle Scholar
11.Shull, R.D., McMichael, R.D., Swartzendruber, L.J., and Bennett, L.H., in Magnetic Properties of Fine Particles: Proceedings of the International Workshop on Studies of Magnetic Properties of Fine Particles and their Relevance to Material Science, edited by Dorman, J.L. and Fiorani, D. (North-Holland, Amsterdam, 1992).Google Scholar
12.Schultz, P.C., J. Am. Ceram. Soc. 59, 214 (1976).CrossRefGoogle Scholar
13.Hung, C-H. and Katz, J.L., J. Mater. Res. 7, 1861 (1992).Google Scholar
14.Vemury, S. and Pratsinis, S.E., J. Am. Ceram. Soc. 78, 2984 (1995).CrossRefGoogle Scholar
15.Zachariah, M.R., Aquino, M.I., Shull, R.D., and Steel, E.B., Nanostruct. Mater. 5, 383 (1995).CrossRefGoogle Scholar
16.Zachariah, M.R., Shull, R.D., McMillin, B.K., and Biswas, P., in Nanotechnology: Molecularly Designed Materials, edited by Chow, G.M. and Gonsalves, K.E. (American Chemical Society, Washington, DC, 1995), pp. 4263.Google Scholar
17.McMillan, B.K., Biswas, P., and Zachariah, M.R., J. Mater. Res. 11, 1552 (1996).CrossRefGoogle Scholar
18.Ehrman, S.H., Friedlander, S.K., and Zachariah, M.R., J. Aerosol Sci. 29, 697 (1998).CrossRefGoogle Scholar
19.DeVries, R.C., Roy, R., and Osborn, E.F., Trans. Brit. Ceram. Soc. 53, 525 (1954).Google Scholar
20.Phillips, B. and Muan, A., J. Am. Ceram. Soc. 42, 413 (1959).CrossRefGoogle Scholar
21. Mention of brand names does not imply or constitute endorsement by the National Institute of Standards and Technology.Google Scholar
22.Ehrman, S.H., Ph.D. Dissertation, University of California, Los Angeles, CA (1997).Google Scholar
23.Revill, B.K., in Mixing in the Process Industries, edited by Harnby, N., Edwards, M.F., and Nienow, A.W. (Butterworth-Heinemann, Oxford, United Kingdom, 1992).Google Scholar
24.Dobbins, R.A. and Megaridis, C.M., Langmuir 3, 254 (1987).CrossRefGoogle Scholar
25.Hering, S.V., Flagan, R.C., and Friedlander, S.K., Environ. Sci. Technol. 12, 667 (1978).CrossRefGoogle Scholar
26.Eberhart, J.P., Structural and Chemical Analysis of Materials (John Wiley & Sons, New York, 1991).Google Scholar
27.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1976).Google Scholar
28.Bruce, R.H., in Science of Ceramics, edited by Steward, G.H. (Academic Press, 1965), Vol. 2.Google Scholar
29.Samsonov, G.V., The Oxide Handbook, 2nd ed. (IFI/Plenum, New York, 1982).CrossRefGoogle Scholar
30.Muan, A., J. Met. 7, 965 (1955).Google Scholar
31.Stevens, H.J., in Introduction to Glass Science, edited by L.D., , Stevens, H.J., and LaCourse, W.C. (Plenum Press, New York, 1972).Google Scholar
32.Tomozawa, M., in Treatise on Materials Science and Technology, Vol. 17, Glass II, edited by Tomozawa, M. and Doremus, R.H. (Academic Press, New York, 1979).Google Scholar
33.Warren, B.E. and Pincus, A.G., J. Am. Ceram. Soc. 23, 301 (1940).CrossRefGoogle Scholar
34.Shimizu, N. and Kushiro, I., Geochem. Cosmochem. Acta 48, 1295 (1984).CrossRefGoogle Scholar
35.Poe, B.T., McMillan, P.F., Rubie, D.C., Chakraborty, S., Yarger, J., and Diefenbacher, J., Science 276, 1245 (1997).CrossRefGoogle Scholar
36.Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P., J. Non-Cryst. Solids 55, 27 (1983).CrossRefGoogle Scholar
37.Belyustin, A.A. and Pisarevskii, A.M., in The Structure of Glass, edited by Porai-Koshits, E.A., (Proceedings of the Fourth AllUnion Conference on the Glassy State, Leningrad, Consultants Bureau, New York, 1966).Google Scholar
38.de Man, A.J.M., van Beest, B.W.H., Leslie, M., and van Santen, R.A., J. Phys. Chem. 94, 2524 (1990).CrossRefGoogle Scholar
39.Zeitler, V.A. and Brown, C.A., J. Phys. Chem. 61, 1174 (1957).CrossRefGoogle Scholar
40.Szostak, R., Nair, V., and Thomas, T.L., J. Chem. Soc., Faraday Trans. 1 83, 487 (1987).Google Scholar
41.Scarano, D., Zecchina, A., Bordiga, S., Geobaldo, F., Spoto, G., Petrini, G., Leofanti, G., Padovan, M., and Tozzola, G., J. Chem. Soc., Faraday Trans. 1. 89, 4123 (1993).Google Scholar