Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:55:25.184Z Has data issue: false hasContentIssue false

Phase identification and superconductivity transitions in Sr-doped Pr1.85Ce0.15CuO4+δ

Published online by Cambridge University Press:  26 July 2012

A. Varela
Affiliation:
Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040 Madrid, Spain
M. Vallet-Regí
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain and Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo. 155, Las Rozas, 28230 Madrid, Spain
J. M. González-Calbet
Affiliation:
Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040 Madrid, Spain and Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo. 155, Las Rozas, 28230 Madrid, Spain
Get access

Abstract

Sr-doped Pr1.85Ce0.15CuO4+δ samples have been prepared with accurate control of the oxygen content. The stability of both T′ and T* phases is strongly dependent on Sr and oxygen content. An electron diffraction study indicates that, in some cases, anionic vacancies are ordered leading to a pseudo-tetragonal superlattice with unit cell parameters . Structural transitions and superconducting phases created by hole doping in such a system are also reported.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tokura, Y., Takagi, H., and Uchida, S., Nature 337, 720 (1989).Google Scholar
2.James, A. C. W. P., Zahurak, S. M., and Murphy, D. W., Nature 338, 240 (1989).CrossRefGoogle Scholar
3.Takagi, H., Uchida, S., and Tokura, Y., Phys. Rev. Lett. 62, 1197 (1989).CrossRefGoogle Scholar
4.Hidaka, Y. and Suzuki, M., Nature 338, 240 (1989).CrossRefGoogle Scholar
5.Tarascon, J. M., Wang, E., Geene, L. H., Bagley, B. G., Hull, G. W., D'Egidio, S. M., Micelli, P. F., Wang, Z. Z., Jing, T. W., Clayhold, J., Ong, N. P., and Brawner, D., Phys. Rev. B 40, 4494 (1989).Google Scholar
6.Izumi, F., Matsui, Y., Takagi, H., Uchida, S., Tokura, Y., and Asano, H., Physica C 158, 433 (1989).Google Scholar
7.Williams, T., Maeno, Y., Mangelschots, I., Reller, A., and Bednorz, G., Physica C 161, 331 (1989).Google Scholar
8.Li, D. J., Zhang, J. P., and Marks, L. D., Physica C 168, 617 (1990).Google Scholar
9.Oku, T., Kajitani, T., Hiraga, K., Hosoya, S., and Shindo, D., Physica C 185–189, 547 (1991).CrossRefGoogle Scholar
10.Van Aken, P. A. and Müller, W. F., Physica C 174, 63 (1991).Google Scholar
11.Chen, C. H., Werder, D. J., James, A. C. W. P., Murphy, D. W., Zahurak, S., Fleming, R. M., Batlogg, B., and Schneemeyer, L. F., Physica C 160, 375 (1989).Google Scholar
12.Akimitsu, J., Suzuki, S., Watanabe, W., and Sawa, H., Jpn. J. Appl. Phys. 27, 1859 (1988).Google Scholar
13.Sawa, H., Suzuki, S., Watanabe, M., Akimitsu, J., Matsubara, H., Watanabe, H., Uchida, S., Kokusho, K., Asano, H., Izumi, F., and Takayama-Muromachi, E., Nature 337, 347 (1989).CrossRefGoogle Scholar
14.Tokura, Y., Fujimori, A., Matsubara, H., Watabe, H., Takagi, H., Uchida, S., Sakai, M., Ikeda, H., Okuda, S., and Tanaka, S., Phys. Rev. B 39, 9704 (1989).Google Scholar
15.Ruddlesden, S. N. and Popper, P., Acta Crystallogr. 11, 54 (1958).Google Scholar
16.Nguyen, N., Er-Rakho, L., Michel, C., Choisnet, J., and Raveau, B., Mater. Res. Bull. 15, 891 (1980).Google Scholar
17.Ruddlesden, S. N. and Popper, P., Acta Crystallogr. 10, 538 (1957).Google Scholar
18.Bringley, J. F., Trail, S. S., and Scott, B. A., J. Solid State Chem. 86, 310 (1990).Google Scholar
19.Varela, A., Vallet-Regí, M., and González-Calbet, J. M., Physica C 235–240, 811 (1994).Google Scholar