Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T12:53:45.073Z Has data issue: false hasContentIssue false

Phase formation in molybdenum disilicide powders during in-flight induction plasma treatment

Published online by Cambridge University Press:  31 January 2011

Xiaobao Fan
Affiliation:
National Institute for Research in Inorganic Materials, 1–1 Namiki, Tsukuba-shi, Ibaraki 305, Japan
Takamasa Ishigaki*
Affiliation:
National Institute for Research in Inorganic Materials, 1–1 Namiki, Tsukuba-shi, Ibaraki 305, Japan
Yoichiro Sato
Affiliation:
National Institute for Research in Inorganic Materials, 1–1 Namiki, Tsukuba-shi, Ibaraki 305, Japan
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

In-flight modification of MoSi2 powders has been carried out by using an Ar–H2 induction plasma. Reactor pressure, powder feed rate, and plate power level were taken as the experimental parameters to alter the thermal history of the injected powder particles. Metastable hexagonal structure of β–MoSi2 is the major phase observed in the Ar–H2 induction plasma-treated molybdenum disilicide powders, while the stable phase of tetragonal structure of α–MoSi2 usually retains no less than 30 wt. %. Depending on the experimental condition and the deviation from stoichiometry in raw materials, low silicides, Mo5Si3 and Mo3Si, and free Si were observed,

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Vasudévan, A. K., and Petrovic, J. J., Mater. Sci. Eng. A 155, 1 (1992).Google Scholar
2.Kung, H., Castro, R. G., Bartlett, A. H., and Petrovic, J. J., Scripta Metall. Mater. 32, 179 (1995).CrossRefGoogle Scholar
3.Kung, H., Castro, R. G., and Stanek, P. W., Mater. Sci. Eng. A 155, 65 (1992).Google Scholar
4.Tiwari, R., and Herman, H., Mater. Sci. Eng. A 155, 95 (1992).Google Scholar
5.Mitchell, T. E., Castro, R. G., and Chadwick, M. M., Philos. Mag. A 65, 1339 (1992).CrossRefGoogle Scholar
6.Fukumoto, M., Ueda, T., and Okane, I., Yosha 30, 1 (1993) (in Japanese).Google Scholar
7.Ohomori, A. and Fukuoda, M., in NTSC Proceedings (Anaheim, CA, 711 June 1993), p. 433.Google Scholar
8.Castro, R. G., Smith, R. W., Rollett, A. D., and Stanek, P. W., Mater. Sci. Eng. A 155, 101 (1992).Google Scholar
9.Jeng, Y., Wolfenstine, J., Lavernia, J., Bailey, D. E., and Sinkinger, A., Scripta Metall. Mater. 28, 453 (1993).CrossRefGoogle Scholar
10.Smith, R. W. and Knight, R., JOM 8, 32 (1995).CrossRefGoogle Scholar
11.Lawrynowicz, D. E., Wolfenstine, J., Lavernia, E. J., Nutt, S. R., Bailey, D. E., Sickinger, A., and Hirt, A. M., Scripta Metall. Mater. 32, 689 (1995).Google Scholar
12.Ishigaki, T. and Boulos, M. I., Ceram. Trans. 22, 139 (1991).Google Scholar
13.Ishigaki, T., Bando, Y., Moriyoshi, Y., and Boulos, M. I., J. Mater. Sci. 28, 4223 (1993).Google Scholar
14.Ishigaki, T., Jurewicz, J., Tanaka, J., Moriyoshi, Y., and Boulos, M. I., J. Mater. Sci. 30, 883 (1995).CrossRefGoogle Scholar
15.Watanabe, T., Kanzawa, A., Ishigaki, T., and Moriyoshi, Y., J. Mater. Res. 11, 2598 (1996).Google Scholar
16.Ishigaki, T., Moriyoshi, Y., Watanabe, T., and Kanzawa, A., J. Mater. Res. 11, 2811 (1996).CrossRefGoogle Scholar
17.Fan, X. and Ishigaki, T., J. Cryst. Growth 171, 166 (1997).Google Scholar
18.Boulos, M. I., J. Thermal Spray Technol. 1, 33 (1992).CrossRefGoogle Scholar
19.Fan, X., Doctoral Dissertation, University of Sherbrooke, Sherbrooke, PQ, Canada, 1994.Google Scholar
20.Proulx, P., Mostaghimi, J., and Boulos, M. I., Plasma Chem. Plasma Process 7, 29 (1987).CrossRefGoogle Scholar
21.Boulos, M. I., Pure and Appl. Chem. 57, 1321 (1985).Google Scholar
22.Chung, F. H., J. Appl. Crystallogr. 7, 526 (1974).Google Scholar
23.Shaw, K. G., Trogolo, J. A., and Moses, T., in Adv. Powder Metall. Part. Mater., Vol. 1, Powder production and spray forming, 1992, p. 363.Google Scholar
24.Weber, S., Schetelich, Ch., and Geist, V., Cryst. Res. Technol. 29, 727 (1994).Google Scholar
25.Bretschneider, W. and Beddies, G., Thin Solid Films 149, 61 (1987).Google Scholar
26.Liu, L. M. and Wang, X. F., Guisuanyan Tongbao 6, 62 (1987) (in Chinese).Google Scholar
27.Chou, T. C. and Nieh, T. G., Thin Solid Films 214, 48 (1992).Google Scholar
28.Zacchetti, N., Takeda, K., and Takeuchi, S., in Proc. Int. Thermal Spray Conf. & Exposition (Orlando, FL, 28 May–5 June 1992), p. 865.Google Scholar
29.Maloy, S. A., Xiao, S. Q., Herner, A. H., and Garett, J., J. Mater. Res. 8, 1079 (1993).CrossRefGoogle Scholar
30.Subrahmarya, J., J. Mater. Res. 9, 2620 (1994).Google Scholar
31.Messner, R. P. and Chiang, Y. M., J. Am. Ceram. Soc. 73, 1193 (1990).Google Scholar
32.Boettinger, W. J., Perepezko, J. H., and Frankwicz, P. S., Mater. Sci. Eng. A155, 33 (1992).Google Scholar
33.Perepezko, J. H. and Boettinger, W. J., in Alloy Phase Diagrams, edited by Bennett, L. H., Massalski, T. B., and Giessen, B. C. (Mater. Res. Soc. Symp. Proc. 19, Elsevier Science Publishing, New York, 1983), p. 223.Google Scholar
34.Gokhale, A. B. and Abbaschian, G. J., in Binary Alloy Phase Diagrams, edited by Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H. (American Society for Metals, Metals Park, OH, 1986), Vol. 1, p. 1631.Google Scholar
35.Samsonov, G. V., Properties Index (Plenum Press, New York, 1964), p. 121.CrossRefGoogle Scholar