Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T17:51:19.362Z Has data issue: false hasContentIssue false

Phase equilibria and crystal chemistry in the Y2O3–Al2O3–SiO2 system

Published online by Cambridge University Press:  31 January 2011

U. Kolitsch
Affiliation:
Max-Planck-Institut für Metallforschung, and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
H. J. Seifert
Affiliation:
Max-Planck-Institut für Metallforschung, and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
T. Ludwig
Affiliation:
Max-Planck-Institut für Metallforschung, and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, and Universität Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, D-70569 Stuttgart, Germany
Get access

Abstract

In order to clarify inconsistencies in the literature and to verify assumed ternary solubilities, the phase equilibria in the Y2O3–Al2O3 –SiO2 system at 1600, 1400, and 1300 °C were experimentally determined using x-ray diffraction (XRD), scanning electron microscope with attached energy-dispersive detector system (SEM-EDX), and electron probe microanalyzer (EPMA). Six quasibinary phases were observed: Y4Al2O9 (YAM), YAlO3 (YAP), Y3Al5O12 (YAG), Y2SiO5, Y2Si2O7 (C and D modifications), and ˜3Al2O3· 2SiO2 (mullite). Y4Al2O9 forms an extended ternary solid solution with the formula Y4Al2(1-x)Si2xO9+x (x = 0 2 ˜0.31). The lowest ternary eutectic temperature was determined at 1371 ± 5 °C by high-temperature differential scanning calorimetry (DSC). The results were compared with previous data available for the Y2O3–Al2O3 –SiO2 system and with data for other RE2O3–Al2O3 –SiO2 (RE = rare earth element) systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cinibulk, M.K. and Thomas, G., J. Am. Ceram. Soc. 73, 1606 (1990).CrossRefGoogle Scholar
2.Kim, D-H. and Kim, C.H., J. Am. Ceram. Soc. 73, 1431 (1990).CrossRefGoogle Scholar
3.Ekström, T. and Nygren, M., J. Am. Ceram. Soc. 75, 259 (1992).CrossRefGoogle Scholar
4.Shelby, J. E., Key Eng. Mater. 94–95, 1 (1994).CrossRefGoogle Scholar
5.Kolitsch, U., Seifert, H. J., and Aldinger, F., J. Phase Equilibria 19, 426 (1998).CrossRefGoogle Scholar
6.Cockayne, B., J. Less-Comm. Met. 114, 199 (1985).CrossRefGoogle Scholar
7.Kolitsch, U., Diploma Thesis, University of Stuttgart, Germany (1992) (in German).Google Scholar
8.Mah, T-I. and Petry, M. D., J. Am. Ceram. Soc. 75, 2006 (1992).CrossRefGoogle Scholar
9.Jin, Z. and Chen, Q., Calphad 19, 69 (1995).CrossRefGoogle Scholar
10.Gröbner, J., Lukas, H. L., and Aldinger, F., Z. Metallkde. 87, 268 (1996).Google Scholar
11.Maier, A.A. and Savinova, I. G., Inorg. Mater. 32, 1078 (1996).Google Scholar
12.Yamane, H., Omori, M., and Hirai, T., J. Mater. Sci. Lett. 14, 470 (1995).CrossRefGoogle Scholar
13.Yamane, H., Ogawara, K., Omori, M., and Hirai, T., J. Am. Ceram. Soc. 78, 2385 (1995).CrossRefGoogle Scholar
14.Kolitsch, U., Seifert, H. J., and Aldinger, F., J. Alloys Compounds 257, 104 (1997).CrossRefGoogle Scholar
15.Felsche, J., Naturwiss. 57, 127 (1970).CrossRefGoogle Scholar
16.Liddell, K. and Thompson, D. P., Brit. Ceram. Trans. J. 85, 16 (1986).Google Scholar
17.Felsche, J., Structure Bonding 13, 99 (1973).CrossRefGoogle Scholar
18.Drummond, C. H. III, Lee, W. E., Sanders, W.A., and Kiser, J. D., Ceram. Eng. Sci. Proc. 9, 1343 (1988).CrossRefGoogle Scholar
19.Kolitsch, U., Ph.D. Thesis, University of Stuttgart, Germany (1995) (in German).Google Scholar
20.Pask, J. A., Ceram. Trans. 6, 1 (1990).Google Scholar
21.Dumitrescu, L. and Sundman, B., J. Eur. Ceram. Soc. 15, 239 (1995).CrossRefGoogle Scholar
22.Lee, W.E. and Rainforth, W. M., Ceramic Microstructures (Chapman & Hall, London, 1994), p. 290.Google Scholar
23.Pask, J. A., J. Eur. Ceram. Soc. 16, 101 (1996).CrossRefGoogle Scholar
24.Bondar, I. A. and Galakhov, F. Ya., Izv. Akad. Nauk SSSR, Ser. Khim. 7, 1325 (1964) (in Russian).Google Scholar
25.O'Meara, C., Dunlop, G.L., and Pompe, R., in High Tech Ceramics, edited by Vicenzini, P. (Elsevier, Amsterdam, 1987), p. 265.Google Scholar
26.Harryson, R. and Vomacka, P., J. Eur. Ceram. Soc. 14, 377 (1994).CrossRefGoogle Scholar
27.Murakami, Y. and Yamamoto, H., Mitsubishi Juko Giho 28, 552 (1991) (in Japanese).Google Scholar
28.Murakami, Y. and Yamamoto, H., J. Ceram. Soc. Jpn. 99, 215 (1991) (in Japanese).CrossRefGoogle Scholar
29.Arita, I. H., Wilkinson, D.S., and Purdy, G. R., J. Am. Ceram. Soc. 75, 3315 (1992).CrossRefGoogle Scholar
30.Shelby, J. E., Minton, S. M., Lord, C. E., and Tuzzolo, M.R., Phys. Chem. Glasses 33, 93 (1992).Google Scholar
31.Kohli, J. T., Shelby, J. E., and Frye, J.S., Phys. Chem. Glasses 33, 73 (1992).Google Scholar
32.Gröbner, J., Ph.D. Thesis, University Stuttgart, Germany (1994).Google Scholar
33.Ball, R.K. and Lewis, M. H., Mater. Sci. Eng. 71, 137 (1985).CrossRefGoogle Scholar
34.Murakami, Y. and Yamamoto, H., J. Ceram. Soc. Jpn. 101, 1101 (1993).CrossRefGoogle Scholar
35.International Centre for Diffraction Data, JCPDS–Powder Diffraction File (Park Lane, Swarthmore, PA, 1996).Google Scholar
36.Kolitsch, U., Seifert, H. J., and Aldinger, F., unpublished work.Google Scholar
37.Coutures, J. P., Antic, E., and Caro, P., Mater. Res. Bull. 11, 699 (1976).CrossRefGoogle Scholar
38.Warshaw, I. and Roy, R., J. Am. Ceram. Soc. 42, 434 (1959).CrossRefGoogle Scholar
39.Christensen, A.N. and Hazell, R. G., Acta Chem. Scand. 45, 226 (1991).CrossRefGoogle Scholar
40.Reed, J. W. and Chase, A. B., Acta Crystallogr. 15, 812 (1962).CrossRefGoogle Scholar
41.Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R., and Nielsen, M., J. Appl. Crystallogr. 20, 123 (1987).CrossRefGoogle Scholar
42.Omori, M., Chen, Z., Koide, T., and Hirai, T., in Proc. 1st Intern. Symp. Sci. Eng. Ceram., Tokyo, Japan (1991), p. 515.Google Scholar
43.Lopato, L.M., Nazarenko, L. V., Gerasimyuk, G. I., and Shevchenko, A. V., Inorg. Mater. 28, 644 (1992).Google Scholar
44.Gowda, G., J. Mater. Sci. 5, 1029 (1986).Google Scholar