Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-12T19:43:37.296Z Has data issue: false hasContentIssue false

Phase diagram studies in the quasi binary systems LaMnO3–SrMnO3 and LaMnO3–CaMnO3

Published online by Cambridge University Press:  31 January 2011

Peter Majewski
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5, 70569 Stuttgart, Germany
Lars Epple
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5, 70569 Stuttgart, Germany
Michael Rozumek
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5, 70569 Stuttgart, Germany
Heike Schluckwerder
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5, 70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Pulvermetallurgisches Laboratorium, Heisenbergstraße 5, 70569 Stuttgart, Germany
Get access

Abstract

The quasi binary systems LaMnO3–SrMnO3 and LaMnO3–CaMnO3 were studied. Both systems show a miscibility gap at intermediate La:Sr and La:Ca ratios below about 1400 °C in air. This phenomenon causes the decomposition of single-phase (La,Sr)MnO3−x and (La,Ca)MnO3−x solid solution into La-rich SrMnO3−x + Sr-rich LaMnO3−x and La-rich CaMnO3−x + Ca-rich LaMnO3−x at lower temperatures, respectively. At 1400 °C in the system LaMnO3–SrMnO3, a structure transformation of (La,Sr)MnO3 from orthorhombic to rhombohedral with increasing Sr content was not observed, and the structure of La0.7Sr0.3MnO3 was determined to be orthorhombic with a = 0.54927 ± 0.0009 nm, b = 0.54582 ± 0.0009 nm, and c 4 0.76772 ± 0.0034 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rao, C.N.R, Cheetham, A.K., and Mahesh, R., Chem. Mater. 8, 2421 (1996).CrossRefGoogle Scholar
2.Proceedings of the Third International Symposium on Solid Oxide Fuel Cells, edited by Singhal, S.C. and Iwahara, H. (The Electrochemical Society, Pennington, NJ, 1993).Google Scholar
3.Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Phys. Rev. B 51, 14103 (1995).CrossRefGoogle Scholar
4.van Roosmalen, J.A.M., van Vlaanderen, P., Cordfunke, E.H.P, Ijdo, W.L., and Ijdo, D.J.W, J. Solid State Chem. 114, 516 (1995).CrossRefGoogle Scholar
5.Negas, T., J. Solid State Chem. 7, 85 (1973).CrossRefGoogle Scholar
6.Horowitz, H.S. and Longo, J.M., Mater. Res. Bull. 13, 1359 (1978).CrossRefGoogle Scholar
7.Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D., Phys. Rev. B 54, 6172 (1996).CrossRefGoogle Scholar
8.Mahendrian, R., Mahesh, R., Rangavittal, N., Tewari, S.K., Raychaudhuri, A.K., Ramakrishnan, T.V., and Rao, C.N.R, Phys. Rev. B 53, 3348 (1995).CrossRefGoogle Scholar
9.Kaduk, J. and Wong-Ng, W., Powder Diffraction File, Card No. 49–0416, International Center for Diffraction Data (1993).Google Scholar
10.Grier, D. and McCarthy, G., Powder Diffraction File, Card No. 46–0513, International Center for Diffraction Data (1993).Google Scholar
11.Negas, T. and Roth, R.S., J. Solid State Chem. 1, 409 (1970).CrossRefGoogle Scholar
12.MacChesney, J.B., Williams, H.J., Potter, J.F., and Sherwood, R.C., Phys. Rev. 164, 779 (1967).CrossRefGoogle Scholar
13.Poeppelmeier, K.R., Leonowicz, M.E., and Longo, J.M., J. Solid State Chem. 44, 89 (1982).CrossRefGoogle Scholar
14.Schiffer, P., Ramirez, A.P., Bao, W., and Cheong, S.W., Phys. Rev. Lett. B 53, 3336 (1996).Google Scholar
15.Jain, S.R., Adiga, K.C., and Pai Verneker, V.R., Combust. Flame 40, 71 (1981).CrossRefGoogle Scholar
16.Periodic Table on the Elements (VCH, Weinheim, Germany, 1993).Google Scholar