Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T05:45:21.437Z Has data issue: false hasContentIssue false

Phase development in Si modified sol-gel-derived lead titanate

Published online by Cambridge University Press:  31 January 2011

John S. Wright
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0132
Lorraine Falter Francis
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0132
Get access

Abstract

Sol-gel methods were used to prepare chemically modified lead titanate (PT) powders. A PT alkoxide solution was synthesized and doped with Si (2–12 mole%) or with equimolar amounts (2–12 mole%) of Si and Pb through the addition of Si and Pb–Si alkoxide solutions, respectively. PT alkoxide solutions were also prepared with excess Pb and Ti (7 and 10 mole%). Gels were prepared through controlled additions of water. Crystalline phase development of gel-derived powders with heat treatment (400–700 °C) was studied using x-ray diffraction (XRD) and differential thermal analysis (DTA). While PT powders without added Si crystallized directly into a perovskite phase, Si modified materials crystallized first into a pyrochlore phase and at a higher temperature transformed into perovskite. The pyrochlore lattice parameter and the temperature for the transformation to perovskite increased with Si content. In all cases, the crystal structure of the final perovskite phase was not affected by the Si addition. The effect of Si on phase development and mechanisms of transformation is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jaffe, B.Cook, W.R. and Jaffe, H.Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
2Moulson, A. J. and Herbert, J. M.Electroceramics (Chapman and Hall, New York, 1990).Google Scholar
3Choi, S. W.Shrout, T. R.Jang, S. J. and Bhalla, A. S.Mater. Lett. 8 (6,7), 253 (1989).Google Scholar
4Francis, L. F. and Payne, D. A.J. Am. Ceram. Soc. 74 (12), 3000 (1991).CrossRefGoogle Scholar
5Swartz, S. L.Strout, T. R.Schulze, W. A. and Cross, L. E.J. Am. Ceram. Soc. 67 (5), 311 (1984).Google Scholar
6Uchino, K.Am. Ceram. Soc. Bull. 65 (4), 647 (1986).Google Scholar
7Scott, J.F. and Araujo, C. A. Paz de, Science 240, 1400 (1989).Google Scholar
8Robbins, W.P.Polla, D.L.Tamagawa, T.Glumac, D.E. and Tjhen, W.J. Micromech. Microeng. 1, 247 (1991).Google Scholar
9Polla, D. L.Ye, C. and Tamagawa, T.Appl. Phys. Lett. 59, 3539 (1991).Google Scholar
10Budd, K.D. and Payne, D.A.Inst. Phys. Conf. Ser. No. 103, Part 1, 13 (1989).Google Scholar
11Okamura, T.Adachi, M.Shiosaki, T. and Kawabata, A.Jpn. J. Appl. Phys. 30 (4), 727 (1991).Google Scholar
12Yoon, S. G. and Kim, H. G.Sci. Ceram. 14, 139 (1988).Google Scholar
13Budd, K. D.Dey, S. K. and Payne, D. A.Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
14Chen, C.Ryder, D. F. and Spurgeon, W. A.J. Am. Ceram. Soc. 72 (8), 1495 (1989).CrossRefGoogle Scholar
15Takahashi, Y. and Yamaguchi, K.J. Mater. Sci. 25, 3950 (1990).Google Scholar
16Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, edited by Brinker, C. J. and Scherer, G. W. (Academic Press, Inc., Boston, MA, 1990).Google Scholar
17Goosey, M. T.Patel, A.Watson, I. M.Whatmore, R. W. and Ainger, F. W. Jr., Ceram. Proc. 41, 4958 (1989).Google Scholar
18Budd, K.D. PDissertation, h.D. Universit y of Illinois (1986).Google Scholar
19Schwartz, R.W. C.Lakeman, D.E. and Payne, D.A. in Better Ceramics Through Chemistry TV, edited by Zelinski, B. J. J.Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 335.Google Scholar
20Turtle, B. A. R.W.Schwartz,Doughty, D.H. and Voight, J. A. in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 159.Google Scholar
21Francis, L. F. Ph. D. Dissertation, University of Illinois (1990).Google Scholar
22Parikh, N. R.Stephen, J. T.Swanson, M. L. and Myers, E. R. in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 193.Google Scholar
23Martin, F. W.Physics and Chemistry of Glasses 6 (4), 143 (1965).Google Scholar
24Roth, R.J. Res. Natl. Std. 56 (1), 17 (1956).CrossRefGoogle Scholar
25Aleshin, E. and Roy, R.J. Am. Ceram. Soc. 45 (1), 18 (1962).Google Scholar
26Jona, F.Shirane, G. and Pepinsky, R.Phys. Rev. 98 (4), 903 (1955).Google Scholar
27Longo, J.M.Raccah, P.M. and Goodenough, J.B.Mater. Res. Bull. IV 191 (1969).Google Scholar
28Sleight, A.Mater.Res. Bull. IV 377 (1969).Google Scholar
29Navrotsky, A.Weidner, D. J.Liebermann, R. C. and Prewitt, C. T.Mater. Res. Bull. V 33 (1992).Google Scholar
30Holman, R.L. and Fulrath, R.M.J. Appl. Phys. 44 (12), 5227 (1973).Google Scholar
31Schwartz, J. M.Schmidt, L.D. and Francis, L.F. unpublished research.Google Scholar