Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T21:59:43.805Z Has data issue: false hasContentIssue false

Phase boundary effects on the mechanical deformation of core/shell Cu/Ag nanoparticles

Published online by Cambridge University Press:  31 January 2011

Min Qi*
Affiliation:
School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
Elissa H. Williams
Affiliation:
Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The uniaxial compressive deformation of core/shell-type Cu/Ag nanoparticles and naked Cu nanoparticles were simulated by molecular dynamics, revealing the role of nanophase boundaries in the mechanical deformation. The simulations show that single type of partial dislocations glide across the entire slip planes of the Cu cores, resulting in elongated Cu cores compared with circular Cu cores of naked Cu nanoparticles. The phase boundary is the nucleation source of dislocations, and the ultrahigh atomic level stress of part atoms in the phase boundary can ensure the movement of the single type of dislocations under compressed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Zhang, X.F., Dong, X.L., Huang, H., Liu, Y.Y., Wang, W.N., Zhu, X.G., Lv, B., Lei, J.P., and Lee, C.G.: Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89(5), 053115 (2006).CrossRefGoogle Scholar
2Zhang, X.F., Dong, X.L., Huang, H., Wang, D.K., Lv, B., and Lei, J.P.: High permittivity from defective carbon-coated Cu nanocapsules. Nanotechnology 18(27), 275701 (2007).CrossRefGoogle Scholar
3Dong, X.L., Zhang, X.F., Huang, H., and Zuo, F.: Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Appl. Phys. Lett. 92(1), 013127 (2008).CrossRefGoogle Scholar
4Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., and Fan, R.: Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol. Lett. 17(4), 961 (2004).CrossRefGoogle Scholar
5Zhou, J.F., Yang, J.J., Zhang, Z.J., Liu, W.M., and Xue, Q.J.: Study of the structure and tribological properties of surface-modified Cu nanoparticles. Mater. Res. Bull. 34(9),1361 (1999).CrossRefGoogle Scholar
6Langlois, C., Alloyeau, D., Bouar, Y.L., Loiseau, A., Oikawa, T., Mottet, C., and Ricolleau, C.: Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. Faraday Discuss. 138, 375 (2008).CrossRefGoogle ScholarPubMed
7Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B: Condens. Matter 63(22), 224106 (2001).CrossRefGoogle Scholar
8Williams, P.L., Mishin, Y., and Hamilton, J.C.: An embedded-atom potential for the Cu–Ag system. Modell. Simul. Mater. Sci. Eng. 14(5), 817 (2006).CrossRefGoogle Scholar
9Nose, S.J.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81(4), 511 (1984).CrossRefGoogle Scholar
10Hoover, W.G.: Canonical dynamics-equilibrium phase-space distributions. Phys. Rev. A: At. Mol. Opt. Phys. 31(3), 1695 (1985).CrossRefGoogle ScholarPubMed
11Parka, H.S., Gallb, K., and Zimmerman, J.A.: Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids 54(9), 1862 (2006).CrossRefGoogle Scholar
12Plimpton, S.: Fast parallel algorithms for short-range moleculardynamics. J. Comput. Phys. 117(1), 1 (1995).CrossRefGoogle Scholar
13http://lammps.sandia.gov/index.html (2008).Google Scholar
14Humphrey, W., Dalke, A., and Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graphics 14(1), 33 (1996).CrossRefGoogle ScholarPubMed
15Pischedda, V., Hearne, G.R., Dawe, A.M., and Lowther, J.E.: Ultrastability and enhanced stiffness of ̃6 nm TiO2 nanoanatase and eventual pressure-induced disorder on the nanometer scale. Phys. Rev. Lett. 96(3), 035509 (2006).CrossRefGoogle ScholarPubMed
16Wang, D., Zhao, J., Hu, S., Yin, X., Liang, S., Liu, Y., and Deng, S.: Where, and how, does a nanowire break? Nano Lett. 7(5), 1208 (2007).CrossRefGoogle ScholarPubMed
17Cao, A.J., Wei, Y.G., and Mao, S.X.: Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl. Phys. Lett. 90(15), 151909 (2007).CrossRefGoogle Scholar
18Yamakov, V., Wolf, D., Phillpot, S.R., and Gleiter, H.: Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51(14), 4135 (2003).Google Scholar
19Wang, J. and Huang, H.: Shockley partial dislocations to twin: Another formation mechanism and generic driving force. Appl. Phys. Lett. 85(24), 5983 (2004).CrossRefGoogle Scholar
20Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39(1–2), 1 (1995).Google Scholar
21Suresh, S. and Li, J.: Deformation of the ultra-strong. Nature 456 (7223), 716 (2008).CrossRefGoogle Scholar
22Sun, L., Banhart, F., Krasheninnikov, A.V., Rodríguez-Manzo, J.A., Terrones, M., and Ajayan, P.M.: Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312(5777), 1199 (2006).CrossRefGoogle Scholar
23Cao, A.J. and Wei, Y.G.: Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys. Rev. B: Condens. Matter 74(21), 214108 (2006).CrossRefGoogle Scholar
24Cao, A.J., Wei, Y.G., and Ma, E.: Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Phys. Rev. B: Condens. Matter 77(19), 195429 (2008).CrossRefGoogle Scholar