Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T10:40:07.305Z Has data issue: false hasContentIssue false

Phase analysis of seeded and doped PbMg1/3Nb2/3O3 prepared by organic solution of citrates

Published online by Cambridge University Press:  31 January 2011

J. C. Carvalho
Affiliation:
I.Q.-UNESP. 14800–900, Araraquara, S.P., C.P. 355, Brazil
C. O. Paiva-Santos
Affiliation:
I.Q.-UNESP. 14800–900, Araraquara, S.P., C.P. 355, Brazil
M. A. Zaghete
Affiliation:
I.Q.-UNESP. 14800–900, Araraquara, S.P., C.P. 355, Brazil
C. F. Oliveira
Affiliation:
I.Q.-UNESP. 14800–900, Araraquara, S.P., C.P. 355, Brazil
J. A. Varela
Affiliation:
I.Q.-UNESP. 14800–900, Araraquara, S.P., C.P. 355, Brazil
E. Longo
Affiliation:
DQ-UFSCar. 13560–905, S. Carlos, S.P., C.P. 676, Brazil
Get access

Abstract

PbMg1/3Nb2/3O3 (PMN) prepared by organic solution of citrates was analyzed by the Rietveld method to determine the influence of seeds and dopants on the perovskite and pyrochlore phase formation. It was observed that pyrochlore phase formation increases with an increase in calcination time when no additives are included during the preparation. It was also observed that a greater amount of perovskite phase appeared in doped or seeded samples. The fraction of perovskite phase increased from 88 mol% in pure sample to ∼95 mol% in doped and seeded samples calcined at 800 °C for 1 h. It is clear that the addition of dopants or seeds during PMN preparation can enhance the formation of perovskite phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kim, N., McHenry, D. A., Jang, S-J., Shrout, T. R., J. Am. Ceram. Soc. 73 (7), 923928 (1990).Google Scholar
2.Ravidranathan, P., Komarmeni, S., and Roy, R., J. Am. Ceram. Soc. 73 (4), 10241025 (1990).CrossRefGoogle Scholar
3.Horowitz, H. S., J. Am. Ceram. Soc. 71 (5), 250251 (1988).Google Scholar
4.Anderson, H. V., Pennel, M. J., and Guha, J.P., Adv. Ceram. 21, 9198 (1987).Google Scholar
5.Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. 17, 12451250 (1982).CrossRefGoogle Scholar
6.Uchino, K., Ceram. Bull. 65 (4), 647652 (1986).Google Scholar
7.Chen, J. and Harmer, J. P., J. Am. Ceram. Soc. 73 (1), 6873 (1990).Google Scholar
8.Liou, Y-C. and Wu, L., J. Am. Ceram. Soc. 77 (12), 32553258 (1994).Google Scholar
9.Pechini, M. P., U.S. Patent 3 330 697 (1967).CrossRefGoogle Scholar
10.Zaghete, M. A., PhD Thesis, Federal University of São Carlos, Brazil (1993).Google Scholar
11.Carvalho, J. C., Zaghete, M. A., Varela, J. A., and Longo, E., Proc. 35° Congresso Brasilerio de Cerâmica e III Iberoamericano de Cerâmica, Vidro e Refratários, 144148 (1991).Google Scholar
12.Carvalho, J. C., Zaghete, M. A., Varela, J.A., and Longo, E., Proc. 36° Congresso Brasilerio de Cerâmica, 157164 (1992).Google Scholar
13.Rietveld, H. M., J. Appl. Cystallogr. 2, 6571 (1969).Google Scholar
14.Sakthivel, A. and Young, R. A., User's Guide to Programs DBWS9006 and DBWS9006-PC for Rietveld Analysis of x-ray and Neutron Diffraction Patterns, School of Physics, Georgia Institute of Technology, Atlanta, GA (1992).Google Scholar
15.Young, R. A. and Wiles, D. B., J. Appl. Crystallogr. 15, 430438 (1982).Google Scholar
16.Verbaere, A., Piffard, Y., Ye, Z. G., and Husson, E., Mater. Res. Bull. 27 (10), 127134 (1992).CrossRefGoogle Scholar
17.Wakiya, N., Saiki, A., Shinozaki, N., and Mizutani, N., Mater. Res. Bull. 28 (2), 137143 (1993).Google Scholar
18.Hill, R. J. and Howard, C. J., J. Appl. Crystallogr. 20, 467474 (1987).Google Scholar
19.Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O., User's Guide to Programs DBWS-9411 for Rietveld Analysis of x-ray and Neutron Diffraction Patterns, School of Physics, Georgia Institute of Technology, Atlanta, GA (1995), pp. 1516.Google Scholar
20.Scott, H. G., J. Appl. Crystallogr. 16, 159163 (1983).CrossRefGoogle Scholar
21.Cagliot, G., Paoleti, A., and Ricci, F. P., Nucl. Instrum. Methods 35, 223228 (1958).Google Scholar
22.Zaghette, M. A., Paiva-Santos, C. O., Varela, J.A., Longo, E., and Mascarenhas, Y. P., J. Am. Ceram. Soc. 75 (8), 20882093 (1992).Google Scholar
23.Leite, E. R., Sousa, C. M. G., Longo, E., and Varela, J.A., Ceram. Int. 21 (3), 143152 (1995).Google Scholar
24.Phule, P. P. and Risbud, S. H., J. Mater. Sci. 25 (2B), 11691183 (1990).Google Scholar
25.Kumar, S., Messing, G. L., and White, W. B., J. Am. Ceram. Soc. 76 (3), 617624 (1993).CrossRefGoogle Scholar
26.Carvalho, J. C., Varela, J.A., Zaghete, M. A., Cilense, M., Las, W. C., and Paiva-Santos, C. O., unpublished.Google Scholar