Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T06:24:12.188Z Has data issue: false hasContentIssue false

Particle size, uniformity, and mesostructure control of magnetic core/mesoporous silica shell nanocomposite spheres

Published online by Cambridge University Press:  03 March 2011

Wenru Zhao
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Jianlin Shi*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Hangrong Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Lingxia Zhang
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Well-structured and monodisperse nanocomposite spheres with a magnetic core/mesoporous silica shell structure (MCMS) were obtained. The effects on the structure and morphology of the MCMS spheres were investigated under various synthesis conditions, including reaction time, quantity of silicate sources of tetraethoxysilane (TEOS) and n-octadecyltrimethoxysilane (C18TMS), ratio of TEOS/C18TMS, and ratio of H2O/EtOH in the starting solution. The particle size of the MCMS spheres and pore diameter are tunable in a certain range with 100% yield. A synthesis mechanism of the mesoporous silica shell was proposed that proceeds via three main stages. The silica shell proved to be effective on protecting the cores from leaching out in acidic conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bourlinos, A.B., Simopoulos, A., Boukos, N., Petridis, D.: Magnetic modification of the external surfaces in the MCM-41 porous silica: Synthesis, characterization, and functionalization. J. Phys. Chem. B 105, 7432 (2001).Google Scholar
2.Gross, A.F., Diehl, M.R., Beverly, K.C., Richman, E.K., Tolbert, S.H.: Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B 107, 5475 (2003).Google Scholar
3.Lu, A.H., Li, W.C., Kiefer, A., Schmidt, W., Bill, E., Fink, G., Schüth, F.: Fabrication of magnetically separable mesostructured silica with an open pore system. J. Am. Chem. Soc. 126, 8616 (2004).CrossRefGoogle ScholarPubMed
4.Wu, P., Zhu, J., Xu, Z.: Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Adv. Funct. Mater. 14, 345 (2004).Google Scholar
5.Giri, S., Trewyn, B.G., Lin, V.S.Y.: Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem., Int. Ed. Engl. 44, 5038 (2005).Google Scholar
6.Sen, T., Sebastianelli, A., Bruce, L.J.: Mesoporous silica-magnetite nanocomposite: Fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc. 128, 7130 (2006).Google Scholar
7.Barbé, C.B., Bartlett, J., Kong, L., Finnie, K., Lin, H.Q., Larkin, M., Calleja, S., Bush, A., Calleja, G.: Silica particles: A novel drug-delivery system. Adv. Mater. 16, 1959 (2004).Google Scholar
8.Zhao, W., Gu, J-G., Zhang, L-X., Chen, H-R., Shi, J-L.: Uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure as drug carrier and in vitro release. J. Am. Chem. Soc. 127, 8916 (2005).Google Scholar
9.Matijević, E.: Production of monodispersed colloidal particles. Annu. Rev. Mater. Sci. 15, 483 (1985).CrossRefGoogle Scholar
10.Sing, K.S.W.: Reporting Physisorption Data for Gas/Solid Systems. Pure Appl. Chem. 87, 603 (1957).Google Scholar
11.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).Google Scholar
12.Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Spheppard, E.W., Mccullen, S.B., Higgins, J.B., Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
13.Zhao, D.Y., Feng, J.L., Huo, Q.S., Melesh, N., Fredrikson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pore. Science 279, 548 (1998).Google Scholar
14.Büchel, G., Unger, K.K., Matsumoto, A., Tsutsumi, K.: A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres. Adv. Mater. 10, 1036 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
15.Iler, R.K.: The Chemistry of Silica (Wiley, New York, 1971).Google Scholar
16.Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
17.Büchel, G., Grün, M., Unger, K.K., Matsumoto, A., Kazuo, T.: Tailored syntheses of nanostructured silicas: Control of particle morphology, particle size and pore size. Supramolecular Sci. 5, 253 (1998).Google Scholar
18.Yu, J-S., Yoon, S.B., Lee, Y.J., Yoon, K.B.: Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures. J. Phys. Chem. B 109, 7040 (2005).CrossRefGoogle ScholarPubMed
19.Schmidt, R., Hansen, E.W., Stocker, M., Akporiaye, D., Ellestad, O.H.: Pore size determination of MCM-51 mesoporous materials by means of 1H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study. J. Am. Chem. Soc. 117, 4049 (1995).Google Scholar
20.Nooney, R.I., Thirunavukkarasu, D., Chen, Y., Josephs, R., Ostafin, A.E.: Self-assembly of mesoporous nanoscale silica/gold composites. Langmuir 19, 7628 (2003).Google Scholar
21.Ohmori, M., Matijević, E.J.: Preparation and properties of uniform coated inorganic colloidal particles. Colloid Interface Sci. 160, 288 (1993).Google Scholar