Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T10:45:09.839Z Has data issue: false hasContentIssue false

Palladium nanoparticles supported by alumina nanofibers synthesized by electrospinning

Published online by Cambridge University Press:  31 January 2011

S.J. Park
Affiliation:
Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325
S. Bhargava
Affiliation:
Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325
E.T. Bender
Affiliation:
Department of Chemistry, The University of Akron, Akron, Ohio 44325
G.G. Chase*
Affiliation:
Departments of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325
R.D. Ramsier
Affiliation:
Departments of Chemistry and Physics, and The Institute for Teaching and Learning, The University of Akron, Akron, Ohio 44325
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Palladium nanoparticles supported by alumina nanofibers have been successfully synthesized by electrospinning using palladium chloride incorporated into a solution of polyvinyl pyrrolidone and aluminum acetate. Palladium agglomerate sizes and the surface morphology of the electrospun nanofibers were determined by transmission electron microscopy. Palladium nanoparticles appeared to be well dispersed within the electrospun nanofiber structure. X-ray diffraction, x-ray photoelectron spectroscopy, and Raman scattering spectroscopy techniques were used to identify the crystalline form and distinguish between oxidized and metallic palladium particles after heating and hydrogenation.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Patel, A.C., Li, S., Wang, C., Zhang, W.Wei, Y.: Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem. Mater. 19, 1231 2007CrossRefGoogle Scholar
2Zhu, Z.H., Zhu, H.Y.S., Wang, B.Lu, G.Q.: Preparation and characterization of copper catalysts supported on mesoporous Al2O3 nanofibers for N2O reduction to N2. Catal. Lett. 91, 73 2003CrossRefGoogle Scholar
3Pham-Huu, C., Keller, N.L., Charbonniere, L.J., Ziessel, R.Ledoux, M.J.: Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C=C bonds. Chem. Comm. 19, 1871 2000CrossRefGoogle Scholar
4Chambers, A., Nemes, T., Rodriguez, N.M.Baker, R.T.K.: Catalytic behavior of graphite nanofiber supported nickel particles. 1. Comparison with other support media. J. Phys. Chem. B 102, 2251 1998CrossRefGoogle Scholar
5Park, C.Baker, R.T.K.: Catalytic behavior of graphite nanofiber supported nickel particles. 2. The influence of the nanofiber structure. J. Phys. Chem. B 102, 5168 1998CrossRefGoogle Scholar
6Zhou, Y., Freitag, M., Hone, J., Staii, C., J.A.T. Jr, , Pinto, N.J.MacDiarmid, A.G.: Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Appl. Phys. Lett. 83, 3800 2003CrossRefGoogle Scholar
7Tomer, V., Teye-Mensah, R., Tokash, J.C., Stojilovic, N., Kataphinan, W., Evans, E.A., Chase, G.G., Ramsier, R.D., Smith, D.J.Reneker, D.H.: Selective emitters for thermophotovoltaics: Erbia-modified electrospun titania nanofibers. Sol. Energ. Mater. Sol. Cells 85, 477 2005CrossRefGoogle Scholar
8Zhang, G., Kataphinan, W., Teye-Mensah, R., Katta, P., Khatri, L., Evans, E.A., Chase, G.G., Ramsier, R.D.Reneker, D.H.: Electrospun nanofibers for potential space-based applications. Mater. Sci. Eng., B 116, 353 2005CrossRefGoogle Scholar
9Bender, E.T., Katta, P., Lotus, A., Park, S.J., Chase, G.G.Ramsier, R.D.: Identification of CO2 sequestered in electrospun metal oxide nanofibers. Chem. Phys. Lett. 423, 302 2006CrossRefGoogle Scholar
10Viswanathamurthi, P., Bhattarai, N., Kim, H.Y., Cha, D.I.Lee, D.R.: Preparation and morphology of palladium oxide fibers via electrospinning. Mater. Lett. 58, 3368 2004CrossRefGoogle Scholar
11Demir, M.M., Gulgun, M.A., Menceloglu, Y.Z., Erman, B., Abramchuk, S.S., Makhaeva, E.E., Khokhlov, A.R., Matveeva, V.G.Sulman, M.G.: Palladium nanoparticles by electrospinning from Poly(acrylonitrile-co-acrylic acid)–PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules 37, 1787 2004CrossRefGoogle Scholar
12Cordi, E.M.Falconer, J.L.: Oxidation of volatile organic compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 catalysts. J. Catal. 162, 104 1996CrossRefGoogle Scholar
13Hoflund, G.B., Hagelin, H.A.E., Weaver, J.F.Salaita, G.N.: ELS and XPS study of Pd/PdO methane oxidation catalysts. Appl. Surf. Sci. 205, 102 2003CrossRefGoogle Scholar
14Urbano, F.J.Marinas, J.M.: Hydrogenolysis of organohalogen compounds over palladium supported catalysts. J. Mol. Catal. A: Chem. 173, 329 2001CrossRefGoogle Scholar
15Scott, S.P., Sweetman, M., Thomson, J., Fitzgerald, A.G.Sturrock, E.J.: Catalytic hydrogenolysis of 1,1,2-trichlorotrifluoroethane on γ-Al2O3-supported palladium/zinc oxide catalyst. J. Catal. 168, 501 1997CrossRefGoogle Scholar
16Bhattacharyya, S.Das, R.K.: Catalytic control of automotive NOx: A review. Int. J. Energy Res. 23, 351 19993.0.CO;2-T>CrossRefGoogle Scholar
17Thirunavukkarasu, K., Thirumoorthy, K., Libuda, J.Gopinath, C.S.: A molecular beam study of the NO + CO reaction on Pd(111) surfaces. J. Phys. Chem. B 109, 13272 2005CrossRefGoogle Scholar
18Almusaiteer, K.Chuang, S.S.C.: Isolation of active adsorbates for the NO–CO reaction on Pd/Al2O3 by selective enhancement and selective poisoning. J. Catal. 180, 161 1998CrossRefGoogle Scholar
19Takashi, M., Masaru, H., Yuichi, I., Kyoko, K.B., Nobuyuki, M., Makoto, T.Yuji, Y.: Effect of noble metal particle size on the sulfur tolerance of monometallic Pd and Pt catalysts supported on high-silica USY zeolite. Appl. Catal. A 286, 249 2005Google Scholar
20Nagaveni, K., Gayen, A., Subbanna, G.N.Hegde, M.S.: Pd-coated Ni nanoparticles by the polyol method: an efficient hydrogenation catalyst. J. Mater. Chem. 12, 3147 2002CrossRefGoogle Scholar
21Xiao, J.P., Xie, Y., Tang, R., Chen, M.Tian, X.: Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 13, 1887 20013.0.CO;2-2>CrossRefGoogle Scholar
22Schlotterbeck, U., Aymonier, C., Thomann, R., Hofmeister, H., Tromp, M., Richtering, W.Mecking, S.: Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers. Adv. Funct. Mater. 14, 999 2004CrossRefGoogle Scholar
23Lisowski, W., Keim, E.G., van den Berg, A.H.J.Smithers, M.A.: Structural and chemical characterisation of titanium deuteride films covered by nanoscale evaporated palladium layers. Anal. Bioanal. Chem. 385, 700 2006CrossRefGoogle ScholarPubMed
24Militello, M.C.Simko, S.J.: Elemental palladium by XPS. Surf. Sci. Spectra 3, 387 1997CrossRefGoogle Scholar
25Militello, M.C.Simko, S.J.: Palladium oxide (PdO) by XPS. Surf. Sci. Spectra 3, 395 1997CrossRefGoogle Scholar
26Rotole, J.A.Sherwood, P.M.A.: Gamma-alumina (γ-Al2O3) by XPS. Surf. Sci. Spectra 5, 18 1998CrossRefGoogle Scholar
27Su, S.C., Carstens, J.N.Bell, A.T.: A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4. J. Catal. 176, 125 1998CrossRefGoogle Scholar
28McBride, J.R., Hass, K.C.Weber, W.H.: Resonance-Raman and lattice-dynamics studies of single-crystal PdO. Phys. Rev. B 44, 5016 1991CrossRefGoogle ScholarPubMed
29Demoulin, O., Navez, M., Gaigneaux, E.M., Ruiz, P., Mamede, A.S., Granger, P.Payen, E.: Operando resonance Raman spectroscopic characterisation of the oxidation state of palladium in Pd/γ-Al2O3 catalysts during the combustion of methane. Phys. Chem. Chem. Phys. 5, 4394 2003CrossRefGoogle Scholar