Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T01:19:10.520Z Has data issue: false hasContentIssue false

Oxygenation characteristics in high-density YBa2Cu3Ox ceramics

Published online by Cambridge University Press:  31 January 2011

M. Kuwabara
Affiliation:
Department of Applied Chemistry, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
H. Shimooka
Affiliation:
Department of Applied Chemistry, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
I. Katayama
Affiliation:
Department of Applied Chemistry, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
T. Inada
Affiliation:
Department of Applied Chemistry, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan
Get access

Abstract

Oxygenation characteristics in high-density YBa2Cu3Ox ceramics with a relative sintered density ≥97%, which were produced by hot-pressing to have various oxygen contents as-hot-pressed, have been investigated. The results indicate that the oxygenation characteristic in the materials was strongly affected by their oxygen content before oxygenation; that is, the attainable oxygen content (directly connected with the superconducting temperature Tc) of the materials after oxygenation increases with a decrease in their oxygen content before oxygenation. Oxygen annealing at 500 °C for 24 h dramatically increased the oxygen content of an YBa2Cu3Ox with x = 6.08 before the oxygen annealing up to 6.90, while the oxygen content of an YBa2Cu3Ox ceramic with x = 6.32 before oxygenation rose only to a value of 6.61 after the same oxygen annealing. This newly observed phenomenon on the oxygenation characteristic in the present materials may provide an idea for improving the superconducting properties in high-density YBa2Cu3Ox ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cava, R. J., Batlogg, B., Chen, S. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Phys. Rev. B 36, 5719 (1987).CrossRefGoogle Scholar
2.Tokumoto, M., Ihara, H., Matsubara, T., Hirabayashi, M., Terada, N., Oyanagi, H., Murata, K., and Kimura, Y., Jpn. J. Appl. Phys. 26, L1462 (1987).CrossRefGoogle Scholar
3.Iguchi, I., Sugishita, A., Yanagisawa, M., Hosaka, S., Asano, H., and Yokoyama, Y., Jpn. J. Appl. Phys. 27, 992 (1988).CrossRefGoogle Scholar
4.Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).CrossRefGoogle Scholar
5.Tu, K. N., Yeh, N. C., Park, S. I., and Tsuei, C. C., Phys. Rev. B 39, 304 (1989).CrossRefGoogle Scholar
6.Ikuma, Y. and Akiyoshi, S., J. Appl. Phys. 64, 3915 (1988).CrossRefGoogle Scholar
7.Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
8.Choi, J. S., Sarikaya, M., Aksay, I., and Kikuchi, R., Phys. Rev. B 42, 4244 (1990).CrossRefGoogle Scholar
9.Veal, B.W., You, H., Paulikas, A.P., Shi, H., Fang, Y., and Downey, J.W., Phys. Rev. B 42, 4770 (1990).CrossRefGoogle Scholar
10.Shelton, R. N., Andreasen, D., Klavins, P., Chen, H. W., Oslin, B. L., and Anderson, R. L., J. Am. Ceram. Soc. 71, C487 (1988).CrossRefGoogle Scholar
11.Loehman, R. E., Hammetter, W.F., Venturini, E. L., Moore, R.H., and Gerstle, F. P. Jr, J. Am. Ceram. Soc. 72, 669 (1989).CrossRefGoogle Scholar
12.Takenaka, T., Noda, H., Yoneda, A., and Sakata, K., Jpn. J. Appl. Phys. 27, L1209 (1988).CrossRefGoogle Scholar
13.Kuwabara, M. and Shimooka, H., Appl. Phys. Lett. 55, 2781 (1989).CrossRefGoogle Scholar
14.Kuwabara, M. and Shimooka, H., J. Appl. Phys. 68, 5908 (1990).CrossRefGoogle Scholar
15.Lindemer, T.B., Hunley, J.F., Gates, J.E., Sutton, A.L. Jr, Brynestad, J., and Hubbard, C. R., J. Am. Ceram. Soc. 72, 1775 (1989).CrossRefGoogle Scholar