Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T02:21:56.617Z Has data issue: false hasContentIssue false

Oxygen diffusion through dielectrics: A critical parameter in high critical temperature superconductors multilayer technology

Published online by Cambridge University Press:  03 March 2011

S.C. Tidrow*
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
W.D. Wilber
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
A. Tauber*
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
S.N. Schauer*
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
D.W. Eckart
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
R.D. Finnegan
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
R.L. Pfeffer
Affiliation:
U.S. Army Research Laboratory, Electronics and Power Sources Directorate, AMSRL-EP-EC-H, Fort Monmouth. New Jersey 07703-5601
*
a)National Research Council-EPSD Research Associate; presently, an Electronics Engineer at the Army Research Laboratory.
b)Under contract with Geo-Centers, Inc.
b)Under contract with Geo-Centers, Inc.
Get access

Abstract

We have studied the relative diffusion rates of oxygen through dielectric/buffer layers used in high critical temperature superconducting multilayer structures. Epitaxial bilayer films of dielectric (CeO2, LaGaO3, NdGaO3, LaAlO3, MgO, SrTiO3, LaLiTi2O6, or LaNaTi2O6) on YBa2Cu3O7−δ (YBCO) have been deposited onto (001) oriented single-crystal MgO substrates using pulsed laser deposition. These bilayers have been investigated for oxygen diffusion over the temperature range 350 to 650 °C by postdeposition annealing the films for 20 min in 0.5 atm of 18O enriched molecular oxygen gas. Secondary ion mass spectroscopy was used to depth profile the relative concentration of 18O to 16O in each bilayer. Compared to YBCO, the dielectrics MgO, SrTiO3, LaLiTi2O6, and LaNaTi2O6 are relatively slow diffusers, while CeO2, LaGaO3, NdGaO3, and LaAlO3 are relatively fast diffusers.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Newman, N. and Lyons, W. G., J. Supercond. 6(3), 119 (1993).CrossRefGoogle Scholar
2Belohoubek, E., Kalokitis, D., Fathy, A., Denlinger, E., Piqué, A., Wu, X. D., Green, S. M., and Venkatesan, T., Appl. Supercond. 1 (1012), 1555 (1993).CrossRefGoogle Scholar
3Van Duzer, T. and Turner, C.W., Principles of Superconductive Devices and Circuits (Elsevier, New York, 1981).Google Scholar
4Many excellent articles on HTSC devices appear in the Proceedings of the 1990 Applied Superconductivity Conference, IEEE Trans. Magn. 27(2), Part IV (1991).CrossRefGoogle Scholar
5Many excellent articles on HTSC devices appear in the Proceedings of the 1992 Applied Superconductivity Conference, IEEE Trans. Appl. Supercond. 3(1), Part IV (1993).CrossRefGoogle Scholar
6Simon, R., Phys. Today 44(6), 64 (1991).CrossRefGoogle Scholar
7Chrisey, D. B. and Inam, A., MRS Bull. XVH (2), 37 (1992).CrossRefGoogle Scholar
8Bendorz, J. G. and Miiller, K. A., Z. Phys. B 64, 189 (1986).Google Scholar
9Adrian, F. J. and Cowan, D. O., C&EN 70(51), 24 (1992).Google Scholar
10Young, K. H., Negrete, G. V., Hammond, R. B., Inam, A.,Ramesh, R., Hart, D. L., and Yonezawa, Y., Appl. Phys. Lett. 58(16), 1789 (1991).CrossRefGoogle Scholar
11Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Phys. Rev. B 36, 5719 (1987).CrossRefGoogle Scholar
12Hammond, R. H. and Bormann, R., Physica C 162164, 703 (1989).Google Scholar
13Ikuma, Y. and Akiyoshi, S., J. Appl. Phys. 64(8), 3915 (1988).CrossRefGoogle Scholar
14Rothman, S. J., Routbort, J. L., Welp, U., and Baker, J.E., Phys. Rev. B 44(5), 2326 (1991).CrossRefGoogle Scholar
15Bredikhin, S. I., Emelchenko, G. A., Shechtman, V. S., Zhokhov, A. A., Carter, S., Chater, R. J., Kilner, J. A., and Steele, B.C.H., Physica C 179 (46), 286 (1991).CrossRefGoogle Scholar
16Tsukui, S., Yamamoto, T., Adachi, M., Shono, Y., Kawabata, K.,Fukuoka, N., Nakanishi, S., Yanase, A., and Yoshioka, Y., Jpn. J. Appl. Phys. 30 (6A), L973 (1991).CrossRefGoogle Scholar
17Krebs, H-U., Krauns, C., and Mattheis, F., J. Alloys Compounds 195, 203 (1993).CrossRefGoogle Scholar
18Pond, J. M., Carrol, K. R., Horwitz, J. S., Chrisey, D. B., Osofsky, M. S., and Cestone, V.C., Appl. Phys. Lett. 59(23), 3033 (1991).CrossRefGoogle Scholar
19Kingston, J. J., Wellstood, F. C., Lerch, P., Miklich, A. H., andJ. Clark, Appl. Phys. Lett. 56(2), 189 (1990).CrossRefGoogle Scholar
20Chase, E. W., Venkatesan, T., Chang, C. C., Wilkens, B., Feldman, W. L., Barboux, P., Tarascon, J-M., Hart, D. L., Wu, X., andInam, A., J. Mater. Res. 4, 1326 (1989).CrossRefGoogle Scholar
21Freer, R., J. Mater. Sci. 15, 803 (1980).CrossRefGoogle Scholar
22Wong, S. B., Vajo, J. J., Hunter, A. T., and Nieh, C.W., Appl. Phys. Lett. 59(6), 724 (1991).CrossRefGoogle Scholar
23Tidrow, S. C., Tauber, A., Wilber, W. D., and Finnegan, R.D., unpublished work.Google Scholar
24Smith, H. M. and Turner, A. F., Appl. Opt. 4(1), 147 (1965).CrossRefGoogle Scholar
25Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N.,Min-Lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51(8), 619 (1987).CrossRefGoogle Scholar
26Foote, M. C., Jones, B. B., Hunt, B. D., Barner, J. B., Vasquez, R. P., and Bajuk, L.J., Physica C 201 (12), 176 (1992).CrossRefGoogle Scholar
27Doss, J. D., Cooke, D. W., McCabe, C. W., and Maez, M. A., Rev. Sci. Instrum. 59(4), 659 (1988).CrossRefGoogle Scholar
28Tipler, P. A., Modern Physics, 5th ed. (Worth, New York, 1982).Google Scholar
29Tallon, J. L., Pooke, D. M., Staines, M. P., Bowden, M. E., Flower, N. E., Buckley, R. G., and Presland, M. R., Physica C 171, 61 (1990).CrossRefGoogle Scholar
30Yoon, K. H. and Chang, S. S., J. Appl. Phys. 67(5), 2516 (1990).CrossRefGoogle Scholar
31Drzazga, Z., Broda, H., Seidier, F., Bohm, P., Geus, H., andWohlleben, D., J. Magn. Magn. Mater. 83, 515 (1990).CrossRefGoogle Scholar
32Paldino, A. E., Rubin, L. G., and Waugh, J. S., J. Phys. Chem. Solids 26, 391 (1965).CrossRefGoogle Scholar
33Hashimoto, H., Hama, M., and Shirasaki, S., J. Appl. Phys. 43, 4828 (1972).CrossRefGoogle Scholar
34Nashimoto, K., Fork, D. K., and Geballe, T. H., Appl. Phys. Lett. 60(10), 1199 (1992).CrossRefGoogle Scholar
35Berezin, A. B., Yuan, C. W., and de Lozanne, A.L., Appl. Phys. Lett. 57(1), 90 (1991).CrossRefGoogle Scholar
36Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S. R., Maley, M.,Rollet, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett. 58(19), 2165 (1991).CrossRefGoogle Scholar
37Maul, M., Schulte, B., Haussler, P., Frank, G., Steinborn, T.,Fuess, H., and Adrian, H., J. Appl. Phys. 74(4), 2942 (1993).CrossRefGoogle Scholar
38Steele, B. C. and Floyd, J. M., Proc. Br. Ceram. Soc. 19, 179 (1971).Google Scholar
39Lee, A. E., Burch, J. F., Simon, R. W., Luine, J. A., Hu, R., and Schwarzbek, S. M., IEEE Trans. Magn. 27(2), 1365 (1991).CrossRefGoogle Scholar
40Eyring, L., Progress in the Science and Technology of the Rare Earths (Pergamon, New York, 1966), Vol. 2.Google Scholar