Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:23:22.352Z Has data issue: false hasContentIssue false

Oxygen diffusion along the short-circuit paths in bicrystal SrTiO3

Published online by Cambridge University Press:  31 January 2011

Isao Sakaguchi
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Manabu Komastu
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Akio Watanabe
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Hajime Haneda
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

Oxygen diffusion in bicrystal SrTiO3 was investigated with the aid of resistive anode encoder of secondary-ion mass spectrometry. The diffusion profiles of 18O on volume, grain boundary (joining interface), and dislocation were separately determined from the three-dimensional distribution of 18O in the bicrystal SrTiO3. The volume diffusion of oxygen is found to be dependent on (i) Nb doping concentration, (ii) crystallographic orientation, and (iii) nonequilibrium oxygen defects that are annihilated by thermal annealing. The feature of 18O diffusion image along the dislocation in (100) and (110) bicrystals can be explained by the dislocation array introduced by the mechanical polishing.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Waser, R., Baiatu, T., and Hardtl, K.H., J. Am. Ceram. Soc. 73, 1645 (1990).CrossRefGoogle Scholar
2.Chan, N.H., Sharma, R.K., and Smyth, D.M, J. Electrochem. Soc. 128, 1762 (1981).CrossRefGoogle Scholar
3.Yamaji, A., J. Am. Ceram. Soc. 58, 152 (1975).CrossRefGoogle Scholar
4.Amante, J.C. and Cawley, J.D., in Point Defects and Related Properties of Ceramics, Ceramic Transactions 24, edited by Mason, T.O. and Routbort, J.L. (American Ceramic Society, Columbus, OH, 1991), Vol. 24, p. 303.Google Scholar
5.Paladino, A.E., Rubin, L.G., and Waugh, J.S., J. Phys. Chem. Solids 26, 391 (1965).CrossRefGoogle Scholar
6.Schwarz, D.B. and Anderson, H.U., J. Electrochem. Soc. 122, 707 (1975).CrossRefGoogle Scholar
7.Kiessling, U., Claus, J., and Borchardt, G., J. Am. Ceram. Soc. 77, 2188 (1994).CrossRefGoogle Scholar
8.Waugh, J.S., Paladino, A.E., DiBenedetto, B., and Wantman, R., J. Am. Ceram. Soc. 46, 60 (1963).CrossRefGoogle Scholar
9.Wuensch, B.J. and Vasilos, T., J. Am. Ceram. Soc. 49, 433 (1966).CrossRefGoogle Scholar
10.Stubican, V.S. and Osenbach, J.W., in Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W.D. (American Ceramic Society, Columbus, OH, 1984), p. 406.Google Scholar
11.Atkinson, A. and Taylar, R.I., Philos. Mag. A 39, 581 (1979).CrossRefGoogle Scholar
12.Watanabe, A., Haneda, H., Ikegami, T., Tanaka, J., and Shirasaki, S., in Proceedings of the 2nd Japan International SAMPE Symposium, Dec. 11 (1991).Google Scholar
13.Sakaguchi, I., Yurimoto, H., and Sueno, S., J. Am. Ceram. Soc. 75, 712 (1992).CrossRefGoogle Scholar
14.Sakaguchi, I., Haneda, H., Tanaka, J., and Yanagitani, T., J. Am. Ceram. Soc. 79, 1627 (1996).CrossRefGoogle Scholar
15.Crank, J., The Mathematics of Diffusion (Oxford University Press, London, 1975), Ch. 3.3, p. 414.Google Scholar
16.Le Claire, A.D., Br J. Appl. Phys. 14, 351 (1963).CrossRefGoogle Scholar
17.Shannon, R.D. and Prewitt, C.T., Acta Crystallogr., Sect. B 25, 925 (1969).CrossRefGoogle Scholar
18.Turnbull, D. and Hoffman, R.E., Acta Metall. 2, 419 (1954).CrossRefGoogle Scholar