Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T14:15:17.390Z Has data issue: false hasContentIssue false

Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite

Published online by Cambridge University Press:  01 April 2005

Diletta Sciti*
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, I-48018 Faenza, Italy
Mylène Brach
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, I-48018 Faenza, Italy
Alida Bellosi
Affiliation:
CNR-ISTEC, Institute of Science and Technology for Ceramics, I-48018 Faenza, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ultra-refractory ceramic composites of composition ZrB2 + (5 to 20) vol% MoSi2were produced by pressureless sintering at 1830 °C under argon atmosphere.Sintering cycles and microstructural analysis point out that at least 20 vol% molybdenum disilicide is necessary for obtaining a dense material. Thereafter, the composite 80 vol% ZrB2 + 20 vol% MoSi2 was used to test the thermal stabilityunder oxidizing environment. Oxidation tests were carried out in flowing syntheticair in a thermogravimetric analyzer from 700 to 1400 °C with exposure time of30 h. In the low-temperature range (700–1000 °C), the oxidation of the composite resembles that of monolithic ZrB2 ceramics, for temperatures >1200 °C the silica resulting from oxidation of molybdenum disilicide seals the sample surface, preventing zirconium diboride from fast degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monteverde, F., Bellosi, A. and Guicciardi, S.: Processing and properties of zirconium diboride-based composites. J. Eur. Ceram. Soc. 22, 279 (2002).CrossRefGoogle Scholar
2. Monteverde, F., Guicciardi, S. and Bellosi, A.: Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater. Sci. Eng. A346, 310 (2003).CrossRefGoogle Scholar
3. Monteverde, F. and Bellosi, A.: Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2 . Adv. Eng. Mater. 7, 508 (2003).10.1002/adem.200300349CrossRefGoogle Scholar
4. Zhang, G-J., Deng, Z-Y., Kondo, N., Yang, J-F. and Ohji, T.: Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).CrossRefGoogle Scholar
5. Tripp, W.C. and Graham, H.C.: Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800 to 1500 °C. J. Electrochem. Soc. 118, 1195 (1971).CrossRefGoogle Scholar
6. Berkowitz-Mattuck, J.B.: High-temperature oxidation, III-Zirconium and hafnium diborides. J. Electrochem. Soc. 113, 908 (1966).CrossRefGoogle Scholar
7. Tripp, W.C., Davis, H.H. and Graham, H.C.: Effect of an SiC addition on the oxidation of ZrB2 . Ceram. Bull. 52, 612 (1973).Google Scholar
8. Mizutani, T. and Tsuge, A.: Effects of metallic boride dispersion on fracture toughness and oxidation resistance in SiC ceramics. J. Ceram. Soc. Japan. Int. Ed. 100, 991 (1992).CrossRefGoogle Scholar
9. Monteverde, F. and Bellosi, A.: Oxidation of ZrB2-based ceramics in dry air. J. Electrochem. Soc. 150 B552 (2003).CrossRefGoogle Scholar
10. Opila, E.J. and Halbig, M.C.: Oxidation of ZrB2-SiC, in Ceramic Engineering and Science Proceedings, edited by Singh, M. and Jessen, T. (ACERS, 22, Westerville, OH, 2001), p. 221228.Google Scholar
11. Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykosky, J.A. and Causey, S.J.: Mechanical thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).CrossRefGoogle Scholar
12. Wang, C.R., Yang, J.M. and Hoffman, W.: Thermal stability of refractory carbide/boride composites. Mater. Chem. Phys. 74, 272 (2002).10.1016/S0254-0584(01)00486-2CrossRefGoogle Scholar
13. Jang, Y-L. and Lavernia, E.J.: Review: Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557 (1994).10.1007/BF00356804CrossRefGoogle Scholar
14. McKamey, C.G., Tortorelli, P.F., Devan, J.H. and Carmichael, C.A.: A study of pest oxidation in polycrystalline Mo Si2 . J. Mater. Res. 7, 2747 (1992).CrossRefGoogle Scholar
15. Meschter, P.J.: Low-temperature oxidation of molybdenum disilicide. Metall. Trans. 23, 1763 (1992).CrossRefGoogle Scholar
16. Chou, T.C. and Nieh, T.G.: Mechanism of MoSi2 pest during low temperature oxidation. J. Mater. Res. 8, 214 (1993).CrossRefGoogle Scholar
17. Natesan, K. and Deevi, S.C.: Oxidation behaviour of molybdenum silicides and their composites. Intermetallics 8, 1147 (2000).CrossRefGoogle Scholar
18. Zhu, Y.T., Shu, L. and Butt, D.P.: Kinetics and products of molybdenum disilicide powder oxidation. J. Am. Ceram. Soc. 85, 507 (2002).CrossRefGoogle Scholar
19. Kurokawa, K., Houzumi, H., Saeki, I. and Takahashi, H.: Low temperature oxidation of fully dense and porous MoSi2 . Mater. Sci. Eng. A261, 292 (1999).CrossRefGoogle Scholar
20. Yanagihara, K., Maruyama, T. and Kazuhiro, N.: Effect of third elements on the pesting suppression of Mo–Si–X intermetallics (X = Al, Ta, Ti, Zr and Y). Intermetallics 4 S133 (1996).CrossRefGoogle Scholar
21. Yokota, H.M., Kudoh, T. and Suzuki, T.: Oxidation resistance of boronized MoSi2 . Surf. Coat. Technol. 169–170, 171 (2003).CrossRefGoogle Scholar
22. Chamberlain, A.L., Fahrenholtz, W.G. and Hilmas, G.H.: Characterization of zirconium diboride-molybdenum disilicide ceramics, in Advances in Ceramic Matrix Composites, Ceramic Transactions, edited by Bansal, N.P., Singh, J.P., Kriven, W.M., and Schneider, H. (Am. Ceram. Soc.,153 Westerville, OH, 2003), p. 299.Google Scholar
23. Shaffer, P.T.B.: An oxidation resistant boride composition. Ceram. Bull. 41, 96 (1962).Google Scholar
24. Opeka, M.M., Talmy, I.G. and Zaykoski, J.A.: Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).CrossRefGoogle Scholar
25. Sciti, D., Guicciardi, S., Melandri, C. and Bellosi, A.: High-temperature resistant in the AlN–SiC–MoSi2 system. J. Am. Ceram. Soc. 86, 1720 (2003).CrossRefGoogle Scholar
26. Lee, J.I., Hecht, N.L. and Mah, T-I.: In-situ processing and properties of SiC/MoSi2 nanocomposites. J. Am. Ceram. Soc. 81, 421 (1998).CrossRefGoogle Scholar
27. McHale, A.E.: Phase Diagram for Ceramists (Am. Ceram. Soc.,, Westerville, OH, 10, 1994), p. 144.Google Scholar
28. McHale, A.E.: Phase Diagram for Ceramists (Am. Ceram. Soc.,, Westerville, OH, 10, 1994), p. 136.Google Scholar
29. McHale, A.E.: Phase Diagram for Ceramists (Am. Ceram. Soc.,, Westerville, OH, 10, 1994), p. 174.Google Scholar
30. Chemistry, HSC for Windows 5, Outokumpu Research Oy, Pori, Finland (2002).Google Scholar
31. Veytizou, C., Quinson, J.F., Valfort, O. and Thomas, G.: Zircon formation from amorphous silica and tetragonal zirconia: Kinetic study and modelling. Solid State Ionics 139, 315 (2001).CrossRefGoogle Scholar