Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T22:39:10.095Z Has data issue: false hasContentIssue false

Overview: Damage in brittle layer structures from concentrated loads

Published online by Cambridge University Press:  31 January 2011

Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Yan Deng
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742-2115
Pedro Miranda
Affiliation:
Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonia Pajares
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidäd de Extremadura, 06071 Badajoz, Spain
Herzl Chai
Affiliation:
Department of Solid Mechanics, Materials and Systems, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
Do Kyung Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Yusong, Taejon 305-701, Korea
Get access

Abstract

In this article, we review recent advances in the understanding and analysis of damage initiation and evolution in laminate structures with brittle outerlayers and compliant sublayers in concentrated loading. The relevance of such damage to lifetime-limiting failures of engineering and biomechanical layer systems is emphasized. We describe the results of contact studies on monolayer, bilayer, trilayer, and multilayer test specimens that enable simple elucidation of fundamental damage mechanics and yet simulate essential function in a wide range of practical structures. Damage processes are observed using post mortem (“bonded-interface”) sectioning and direct in situ viewing during loading. The observations reveal a competition between damage modes in the brittle outerlayers—cone cracks or quasiplasticity at the top (near-contact) surfaces and laterally extending radial cracks at the lower surfaces. In metal or polymeric support layers, yield or viscoelasticity can become limiting factors. Analytical relations for the critical loads to initiate each damage mode are presented in terms of key system variables: geometrical (layer thickness and indenter radius); material (elastic modulus, strength and toughness of brittle components, hardness of deformable components). Such relations provide a sound physical basis for the design of brittle layer systems with optimal damage thresholds. Other elements of the damage process—damage evolution to failure, crack kinetics (and fatigue), flaw statistics, and complex (tangential) loading—are also considered.

Type
Review
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Johnson, K.L., Contact Mechanics (Cambridge University Press, London, U.K., 1985).Google Scholar
2.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).Google Scholar
3.Lawn, B.R., Lee, K.S., Chaff, H., Pajares, A., Kim, D.K., Wuttiphan, S., Peterson, I.M., and Hu, X., Adv. Eng. Mater. 2, 745 (2000).Google Scholar
4.Lawn, B.R., Padture, N.P., Cai, H., and Guiherteau, F., Science 263, 1114 (1994).Google Scholar
5.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans ASME J. Tribol. 116, 860 (1994).Google Scholar
6.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).Google Scholar
7.Wuttiphan, S., Lawn, B.R., and Padture, N.P., J. Am. Ceram. Soc. 79, 634 (1996).Google Scholar
8.Pajares, A., Wei, L., Lawn, B.R., and Berndt, C.C., J. Am. Ceram. Soc. 79, 1907 (1996).Google Scholar
9.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).Google Scholar
10.Lardner, T.J., Ritter, J.E., and Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).Google Scholar
11.Lee, K.S., Wuttiphan, S., Hu, X.Z., Lee, S.K., and Lawn, B.R., J. Am. Ceram. Soc. 81, 571 (1998).Google Scholar
12.Lee, K.S., Lee, S.K., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 81, 2394 (1998).Google Scholar
13.Jung, Y.G., Wuttiphan, S., Peterson, I.M., and Lawn, B.R., J. Dent. Res. 78, 887 (1999).Google Scholar
14.Rhee, Y-W., Kim, H-W., Deng, Y., and Lawn, B.R., J. Am. Ceram. Soc. 84, 1066 (2001).Google Scholar
15.Deng, Y., Lawn, B.R., and Lloyd, I.K., J. Biomed. Mater. Res. (Appl. Biomater.) 63, 137 (2002).Google Scholar
16.Pajares, A., Wei, L., Lawn, B.R., Padture, N.P., and Berndt, C.C., Mater. Sci. Eng. A 208, 158 (1996).Google Scholar
17.Gerberich, W.W., Strojny, A., Yoder, K., and Cheng, L-S., J. Mater. Res. 14, 2210 (1999).Google Scholar
18.Ramsey, P.M., Chandler, H.W., and Page, T.F., Surf. Coat. Technol. 49, 504 (1991).Google Scholar
19.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).Google Scholar
20.Wang, J.S., Sugimura, Y., Evans, A.G., and Tredway, W.K., Thin Solid Films 325, 163 (1998).Google Scholar
21.Abdul-Baqi, A. and Giessen, E.V.d., Int. J. Solids Struct. 39, 1427 (2002).Google Scholar
22.Kamat, S., Su, X., Ballarini, R., and Heuer, A.H., Nature 405, 1036 (2000).Google Scholar
23.Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A., J. Mater. Res. 16, 2485 (2001).Google Scholar
24.Cook, J. and Gordon, J.E., Proc. R. Soc. London A 282, 508 (1964).Google Scholar
25.Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., and Birchall, J.D., Nature 347, 455 (1991).Google Scholar
26.Prakash, O., Sarkar, P., and Nicholson, P.S., J. Am. Ceram. Soc. 78, 1125 (1995).Google Scholar
27.Lakshminarayanan, R., Shetty, D.K., and Cutler, R.A., J. Am. Ceram. Soc. 79, 79 (1996).Google Scholar
28.Rao, M.P., Sánchez-Herencia, A.J., Beltz, G.E., McMeeking, R.M., and Lange, F.F., Science 286, 102 (1999).Google Scholar
29.Marshall, D.B., Am. Ceram. Soc. Bull. 71, 969 (1992).Google Scholar
30.Shaw, M.C., Marshall, D.B., Dadkhah, M.S., and Evans, A.G., Acta Metall. 41, 3311 (1993).Google Scholar
31.Liu, H., Lawn, B.R., and Hsu, S.M., J. Am. Ceram. Soc. 79, 1009 (1996).Google Scholar
32.Chan, H.M., Annu. Rev. Mater. Sci. 27, 249 (1997).Google Scholar
33.DeLong, R. and Douglas, W.H., J. Dent. Res. 62, 32 (1983).Google Scholar
34.Kelly, J.R., Annu. Rev. Mater. Sci. 27, 443 (1997).Google Scholar
35.Peterson, I.M., Pajares, A., Lawn, B.R., Thompson, V.P., and Rekow, E.D., J. Dent. Res. 77, 589 (1998).Google Scholar
36.Tsai, Y-L., Petsche, P.E., Yang, M.C., and Anusavice, K.J., Int. J. Prosthodont. 11, 27 (1998).Google Scholar
37.Kelly, J.R., J. Prosthet. Dent. 81, 652 (1999).Google Scholar
38.Lawn, B.R., Deng, Y., and Thompson, V.P., J. Prosthet. Dent. 86, 495 (2001).Google Scholar
39.Eberhardt, A.W., Lewis, J.L., and Keer, L.M., ASME J. Biomed. Eng. 113, 410 (1991).Google Scholar
40.Willmann, G., Adv. Eng. Mech. 3, 135 (2001).Google Scholar
41.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., J. Mater. Res. 16, 115 (2001).Google Scholar
42.Zhao, H., Miranda, P., Lawn, B.R., and Hu, X., J. Mater. Res. 17, 1102 (2002).Google Scholar
43.Lee, C-S., Kim, D.K., Sanchez, J., Miranda, P., Pajares, A., and Lawn, B.R., J. Am. Ceram. Soc. 85, 2019 (2002).Google Scholar
44.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, U.K., 1993), Chap. 8 and 9.Google Scholar
45.Fischer-Cripps, A.C. and Lawn, B.R., J. Am. Ceram. Soc. 79, 2609 (1996).Google Scholar
46.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).Google Scholar
47.Rhee, Y-W., Kim, H-W., Deng, Y., and Lawn, B.R., J. Am. Ceram. Soc. 84, 561 (2001).Google Scholar
48.Peterson, I.M., Wuttiphan, S., Lawn, B.R., and Chyung, K., Dent. Mater. 14, 80 (1998).Google Scholar
49.Guiberteau, F., Padture, N.P., and Lawn, B.R., J. Am. Ceram. Soc. 77, 1825 (1994).Google Scholar
50.Cai, H., Kalceff, M.A. Stevens, and Lawn, B.R., J. Mater. Res. 9, 762 (1994).Google Scholar
51.Lawn, B.R., Padture, N.P., Guibertea, F., and Cai, H., Acta Metall. 42, 1683 (1994).Google Scholar
52.Lawn, B.R. and Marshall, D.B., J. Mech. Phys. Solids 46, 85 (1998).CrossRefGoogle Scholar
53.Lawn, B.R., Lee, S.K., Peterson, I.M., and Wuttiphan, S., J. Am. Ceram. Soc. 81, 1509 (1998).Google Scholar
54.Lee, K.S., Jung, Y-G., Peterson, I.M., Lawn, B.R., Kim, D.K., and Lee, S.K., J. Am. Ceram. Soc. 83, 2255 (2000).Google Scholar
55.Cai, H., Padture, N.P., Hooks, B.M., and Lawn, B.R., J. Eur. Ceram. Soc. 13, 149 (1994).Google Scholar
56.Wei, L. and Lawn, B.R., J. Mater. Res. 14, 939 (1996).Google Scholar
57.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 77, 2518 (1994).Google Scholar
58.Xu, H.H.K., Wei, L., Padture, N.P., Lawn, B.R., and Yeckley, R.L., J. Mater. Sci. 30, 869 (1995).Google Scholar
59.Pajares, A., Wei, L., Lawn, B.R., and Marshall, D.B., J. Mater. Res. 10, 2613 (1995).Google Scholar
60.Cai, H., Kalceff, M.A.S., Hooks, B.M., Lawn, B.R., and Chyung, K., J. Mater. Res. 9, 2654 (1994).Google Scholar
61.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 78, 1431 (1995).Google Scholar
62.Lee, S.K. and Lawn, B.R., J. Am. Ceram. Soc. 82, 1281 (1999).Google Scholar
63.Jung, Y-G., Peterson, I.M., Kim, D.K., and Lawn, B.R., J. Dent. Res. 79, 722 (2000).Google Scholar
64.Langitan, F.B. and Lawn, B.R., J. Appl. Phys. 41, 3357 (1970).Google Scholar
65.Kim, D.K., Jung, Y-G., Peterson, I.M., and Lawn, B.R., Acta Mater. 47, 4711 (1999).Google Scholar
66.Xu, H.H.K., Smith, D.T., and Jahanmir, S., J. Mater. Res. 11, 2325 (1996).Google Scholar
67.Nagarajan, V.S. and Jahanmir, S., Wear 200, 176 (1996).Google Scholar
68.Xu, H.H.K., Jahanmir, S., and Ives, L.K., J. Mater. Res. 11, 1717 (1996).Google Scholar
69.Frank, F.C. and Lawn, B.R., Proc. R. Soc. London A 299, 291 (1967).Google Scholar
70.Tabor, D., Hardness of Metals (Clarendon, Oxford, U.K., 1951).Google Scholar
71.Roesler, F.C., Proc. Phys. Soc. Lond. B 69, 981 (1956).Google Scholar
72.Kocer, C. and Collins, R.E., J. Am. Ceram. Soc. 81, 1736 (1998).Google Scholar
73.Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 62, 347 (1979).Google Scholar
74.Puttick, K.E., J. Phys. D: Appl. Phys. 12, L19 (1979).Google Scholar
75.Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).Google Scholar
76.Russo, C.J., Harmer, M.P., Chan, H.M., and Miller, G.A., J. Am. Ceram. Soc. 75, 3396 (1992).Google Scholar
77.Wei, L., Pajares, A., and Lawn, B.R., J. Mater. Res. 11, 1329 (1996).Google Scholar
78.Wuttiphan, S., Pajares, A., Lawn, B.R., and Berndt, C.C., Thin Solid Films 293, 251 (1997).Google Scholar
79.Zhao, H., Hu, X.Z., Bush, M.B., and Lawn, B.R., J. Mater. Res. 15, 676 (2000).Google Scholar
80.Chai, H., Lawn, B.R., and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).Google Scholar
81.Zhao, H., Hu, X., Bush, M.B., and Lawn, B.R., J. Mater. Res. 16, 1471 (2001).Google Scholar
82.Chai, H. and Lawn, B.R., J. Mater. Res. 15, 1017 (2000).Google Scholar
83.Kim, H-W., Deng, Y., Miranda, P., Pajares, A., Kim, D.K., Kim, H-E., and Lawn, B.R., J. Am. Ceram. Soc. 84, 2377 (2001).Google Scholar
84.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 8.Google Scholar
85.Lee, K.S., Rhee, Y-W., Blackburn, D.H., Lawn, B.R., and Chai, H., J. Mater. Res. 15, 1653 (2000).Google Scholar
86.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., Acta Mater. 49, 3719 (2001).Google Scholar
87.Bennison, S.J., Jagota, A., and Smith, C.A., J. Am. Ceram. Soc. 82, 1761 (1999).Google Scholar
88.Iwashita, N., Swain, M.V., Field, J.S., Ohta, N., and Bitoh, S., Carbon 39, 1525 (2001).Google Scholar
89.Suresh, S., Fatigue of Materials (Cambridge University Press, Cambridge, U.K., 1991).Google Scholar
90.Hamilton, G.M. and Goodman, L.E., J. Appl. Mech. 33, 371 (1966).Google Scholar
91.Hamilton, G.M., Proc. Inst. Mech. Eng. 197C, 53 (1983).Google Scholar
92.Lawn, B.R., Proc. R. Soc. London A 299, 307 (1967).Google Scholar
93.Chiang, S-S. and Evans, A.G., J. Am. Ceram. Soc. 66, 4 (1983).Google Scholar
94.Lawn, B.R., Wiederhorn, S.M., and Roberts, D.E., J. Mater Sci. 19, 2561 (1984).Google Scholar
95.Xu, H.H.K. and Jahanmir, S., J. Am. Ceram. Soc. 78, 497 (1995).Google Scholar
96.Lee, C-S., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 84, 2719 (2001).Google Scholar
97.Gordon, J.E., The New Science of Strong Materials (Penguin, Harmondsworth, U.K., 1968).Google Scholar
98.Folsom, C.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 77, 689 (1994).Google Scholar
99.Folsom, C.A., Zok, F.W., and Lange, F.F., J. Am. Ceram. Soc. 77, 2081 (1994).Google Scholar
100.Ohji, T., Shigegaki, Y., Miyajima, T., and Kanzaki, S., J. Am. Ceram. Soc. 80, 991 (1997).Google Scholar
101.Ha, H.C., Chan, H.M., and Nied, H.F., Acta Mater. 49, 2453 (2001).CrossRefGoogle Scholar
102.Jorgensen, O. and Horsewell, A., Acta Metall. Mater. 8, 3431 (1997).Google Scholar
103.Ball, A., Journal de Physique IV 7 C3921 (1997).Google Scholar
104.Grant, P.V., Cantwell, W.J., McKenzie, H., and Corkhill, P., Int. J. Impact Eng. 21, 737 (1998).Google Scholar
105.Maekawa, I., Sudou, H., and Uda, K., Int. J. Impact Eng. 24, 673 (2000).Google Scholar
106.Chai, H. and Lawn, B.R., Acta Mater. 50, 2613 (2002).Google Scholar
107.Jitcharoen, J., Padture, N.P., Giannakopoulos, A.E., and Suresh, S., J. Am. Ceram. Soc. 81, 2301 (1998).Google Scholar