Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T02:38:16.316Z Has data issue: false hasContentIssue false

Origin of the Y2Ba1Cu1O5 free region in melt-textured Y–Ba–Cu–O oxides

Published online by Cambridge University Press:  03 March 2011

Chan-Joong Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305-600, Korea
Hee-Gyoun Lee
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305-600, Korea
Ki-Baik Kim
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305-600, Korea
Gye-Won Hong
Affiliation:
Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, P.O. Box 105, Yusung, Taejon 305-600, Korea
Get access

Abstract

In order to understand the formation mechanism of the Y2BaCuO5 free region, microstructures concerning incongraent mehing and peritectic reaction were studied in melt-textured Y–Ba–Cu–O oxides. It is found that spherical pores form during incongruent melting of the YBa2Cu3O7−y phase into Y2BaCuO3 and a Ba–Cu–O liquid phase. As the melting goes on, liquid phase flows into the pores and then produces spherical liquid pockets containing a few Y2BaCuO5 particles. During slow cooling of the sample from the peritectic temperature to the temperature where YBa2Cu3O7−y phase is formed, the liquid pockets are converted into YBa2Cu3O7−y phase containing a few Y2BaCuO5 particles. Sometimes, remnant Ba–Cu–O liquid phase is present at the center part of the Y2BaCuO5 free regions due to the incomplete peritectic reaction. It is concluded that formation of spherical pores during incongruent melting of YBa2Cu3O7−y is responsible for the formation of the Y2BaCuO5 free regions.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).Google Scholar
2Kim, C-J., Kim, K-B., Chang, I-S., Won, D-Y., Moon, H-C., and Suhr, D-S., J. Mater. Res. 8, 699 (1993).Google Scholar
3Fujimoto, H., Murakami, M., and Koshizuka, N., Physica C 203, 103 (1992).Google Scholar
4Murakami, M., Gotoh, S., Koshizuka, N., Tanaka, S., Matsushita, T., Kambe, S., and Kitazawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
5Murakami, M., Yamakuchi, K., Fujimoto, H., Nakahara, N., Taguchi, T., Koshizuka, N., and Tanaka, S., Cryogenics 32, 1404 (1992).Google Scholar
6Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., J. Mater. Res. 6, 1404 (1991).Google Scholar
7Kim, C-J., Lai, S.H., and McGinn, P.J., Mater. Lett. 19, 185 (1994).Google Scholar
8Varanaci, C. and McGinn, P.J., Physica C 207, 79 (1993).Google Scholar
9Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., in Critical Currents of High Temperature Superconductors and Related Topics (1994 International Workshop on Supercond. Proc., Kyoto, Japan, 1994), p. 208.Google Scholar
10Kim, C-J., Kim, K-B., Hong, G-W., and Lee, H-Y., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
11Miletich, R., Murakami, M., Preisinger, A., and Weber, H.W., Physica C 209, 415 (1993).Google Scholar
12Jin, S., Tiefel, T. H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlott, G.W., Fastnacht, R.A., and Keith, H.D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
13Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
14Kim, C-J., Kim, K-B., Lee, K-W., Lee, C-T., Hong, G-W., Chang, I-S., and Won, D-Y., Mater. Lett. 11, 241 (1991).Google Scholar
15Bormann, R. and Nolting, J., Appl. Phys. Lett. 54, 2148 (1989).CrossRefGoogle Scholar
16Porat, O., Reiss, I., and Tuller, H.L., Physica C 192, 60 (1992).Google Scholar
17Kim, J-S. and Gaskell, D.R., J. Am. Ceram. Soc. 77, 753 (1994).CrossRefGoogle Scholar
18Williams, R.K., Alexander, K.B., Brynestad, J., Henson, T.J., Kroeger, D.M., Lindemer, T.B., Marsh, G.C., Scarbough, J.O., and Specht, E.D., J. Appl. Phys. 70, 905 (1991).Google Scholar
19Kang, S-J. L., Kaysser, W.A., Petzow, G., and Yoon, D.N., Powder Metall. 27, 97 (1984).CrossRefGoogle Scholar
20Kang, S-J.L., Greil, P., Mitomo, M., and Moon, J.H., J. Am. Ceram. Soc. 72, 1166 (1989).Google Scholar
21Kim, C-J., Kim, K-B., Won, D-Y., and Hong, G-W., Physica C 228, 351 (1994).Google Scholar