Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T21:59:20.072Z Has data issue: false hasContentIssue false

Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates

Published online by Cambridge University Press:  03 March 2011

Keith G. Brooks
Affiliation:
Département de Materiaux, Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
Ian M. Reaney
Affiliation:
Département de Materiaux, Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
Radosveta Klissurska
Affiliation:
Département de Materiaux, Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
Y. Huang
Affiliation:
Département de Materiaux, Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
L. Bursill
Affiliation:
Département de Materiaux, Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
N. Setter
Affiliation:
Département de Materiaux, Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
Get access

Abstract

The nucleation, growth, and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, and excess lead addition are reported. The use of post-pyrolysis oxygen anneals at temperatures in the regime of 350–450 °C was found to strongly affect the kinetics of subsequent amorphous-pyrochlore-perovskite crystallization by rapid thermal annealing. The use of such post-pyrolysis anneals allowed films of reproducible microstructure and textures [both (100) and (111)] to be prepared by rapid thermal annealing. It is proposed that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. Such changes in the Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klee, M., De Veirman, A., Van de Weijer, P., Mackens, U., and Van Hal, H., Philips Res. Rep. 47, 263 (1993).Google Scholar
2Hirano, S., Yugo, T., Kikuta, K., Araki, Y., Saitoh, M., and Ogasahara, S., J. Am. Ceram. Soc. 75 (10), 2785 (1992).CrossRefGoogle Scholar
3Dormans, G. J. M., de Keijser, M., van Veldhoven, P. J., Frigo, D. M., Holewijn, J. E., van Mier, G. P. M., and Smit, C. J., Chem. Mater. 5, 448 (1993).CrossRefGoogle Scholar
4Braukhaus, R., Huber, H., Pitzer, D., and Wersing, W., Ferroelectrics 127, 137 (1992).CrossRefGoogle Scholar
5Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 9, 699 (1994).CrossRefGoogle Scholar
6Reaney, I. M., Brooks, K. G., Klissurska, R., Pawlaczyk, Cz., and Setter, N., J. Am. Ceram. Soc. 77, 1209 (1994).CrossRefGoogle Scholar
7Spierings, G. A. C. M., van Zon, J. B. A., Klee, M., and Larsen, P. K., Proc. 4th Int. Symp. on Integrated Ferroelectrics, Monterey, CA, March 9–11, 1992.Google Scholar
8Sreenivas, K., Reaney, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R. G., J. Appl. Phys. 75 (1), 232 (1994).CrossRefGoogle Scholar
9Chen, S. and Chen, I., IMF Proc, August (1993).Google Scholar
10Chikarmane, V., Sudhama, C., Kim, J., Lee, J., and Tasch, A., Appl. Phys. Lett. 59 (22), 2850 (1991).CrossRefGoogle Scholar
11Spierings, G. A. C. M., Ulenaers, M. J. E., Kampschoer, G. L. M., van Hal, H. A. M., and Larsen, P. K., J. Appl. Phys. 70 (4), 2290 (1991).CrossRefGoogle Scholar
12Ryder, D. F. Jr. and Raman, N. K., J. Elec. Mater. 21 (10), 971 (1992).CrossRefGoogle Scholar
13Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 7, 3039 (1992).CrossRefGoogle Scholar
14Griswold, E. M., Sayer, M., and Amm, D. T., Can. J. Phys. 69, 260 (1991).CrossRefGoogle Scholar
15Tuttle, B. A., Doughty, D. H., Schwartz, R. W., Garino, T. J., Martinez, S. L., Tissot, R. G., and Hammetter, W. F., Ceram. Trans. (Mater. Processes Microelectron Syst.) 15, 179191 (1990).Google Scholar
16Huffman, M. and Schuele, P. J., Ferroelectrics 143, 251 (1993).CrossRefGoogle Scholar
17Klee, M. and Larsen, P., Ferroelectrics 133, 91 (1992).CrossRefGoogle Scholar
18Lipeles, R. A., Coleman, D. J., and Leung, M. S., IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 38 (6), 684 (1991).CrossRefGoogle Scholar
19Tohge, N., Takahashi, S., and Minami, T., J. Am. Ceram. Soc. 74 (1), 67 (1991).CrossRefGoogle Scholar
20Dekleva, T. W., Hayes, J. M., Cross, L. E., and Geoffrey, G. L., J. Am. Ceram. Soc. 71 (5), C280 (1988).CrossRefGoogle Scholar
21Lipeles, R. A., Coleman, D. J., and Leung, M. S., in Better Ceramics through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 665.Google Scholar
22Bursill, L. and Brooks, K., J. Appl. Phys. (1994, in press).Google Scholar
23Budd, K. D., Dey, S. K., and Paine, D. A., Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
24Reaney, I. M., Barber, D. J., and Watton, R., J. Mater. Sci.: Mater. Electron. 3, 51 (1992).Google Scholar
25Tuttle, B. A., Schwartz, R. W., Doughty, D. H., and Voigt, J. A., in Ferroelectric Thin Films, edited by Meyers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 159.Google Scholar
26Sorrell, C., J. Am. Ceram. Soc. 56 (12), 613 (1973).CrossRefGoogle Scholar
27Magaw, H., Ferroelectricity in Crystals (Methuan & Co., Ltd., London, 1957).Google Scholar
28Brooks, K., Maeder, T., and Reaney, I., unpublished research.Google Scholar