Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T20:55:26.043Z Has data issue: false hasContentIssue false

Optimizing SrTiO3 films on textured Ni substrates using chemical solution deposition

Published online by Cambridge University Press:  01 April 2005

M.P. Siegal*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421
P.G. Clem
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421
J.T. Dawley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421
J. Richardson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421
D.L. Overmyer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421
T.G. Holesinger
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Chemical solution deposition (CSD) is used to grow high-quality (100)-oriented films of SrTiO3 (STO) on CSD Ba0.2 Ca0.8TiO3(100) (BCT) templates on textured W-doped Ni(100) (Ni:W) tape substrates. The BCT template films form a thin layer or “skin” that bridges its significant porosity. STO films grown at 1000 °C appear optimized for heteroepitaxial orientation, surface coverage, and film smoothness. Both interfaces in the STO(100)/BCT(100)/Ni:W(100) stack demonstrate excellent atomic registry and compositional abruptness. Doping STO with a few atomic percent of Nb reduces oxygen diffusion into the film by an order of magnitude and provides greater protection to the Ni interfacial surface from oxidation during the growth of additional functional oxides requiring relatively higher p(O2) high-temperature processing, such as superconducting YBa2Cu3O7−δ. CSD growth of BCT and STO also planarizes pre-existing grooves in the Ni:W(100) tapes while maintaining a high degree of orientation by forming facets at the interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: Nozomi Photonics, San Jose, CA.

References

REFERENCES

1. Siegal, M.P., Clem, P.G., Dawley, J.T., Ong, R.J., Rodriguez, M.A. and Overmyer, D.L.: All solution-chemistry approach for YBa2Ca3O7−∂-coated conductors. Appl. Phys. Lett. 80, 2710 (2002).CrossRefGoogle Scholar
2. Phillips, J.M., Siegal, M.P., van Dover, R.B., Tiefel, T.H., Marshall, J.H., Strauss, A.J., Fahey, R.E., Sengupta, S., Cassanho, A. and Jenssen, H.P.: Comparison of Ba2YCu3O7-d thin films grown on various perovskite substrates by coevaporation. J. Mater. Res. 7, 2650 (1992).CrossRefGoogle Scholar
3. Chin, D.K. and Van Duzer, T.: Novel all-high Tc epitaxial Josephson junction. Appl. Phys. Lett. 58, 753 (1991).CrossRefGoogle Scholar
4. Selvaraj, U., Prasadarao, A.V., Komarneni, S. and Roy, R.: Sol-gel thin films of SrTiO3 from chemically modified alkoxide precursors. Mater. Lett. 12, 311 (1991).CrossRefGoogle Scholar
5. Braunstein, G., Paz-Pujalt, G.R., Mason, M.G., Blanton, T., Barnes, C.L. and Margevich, D.: The processes of formation and epitaxial alignment of SrTiO3 thin films prepared by metallo-organic decomposition. J. Appl. Phys. 73, 961 (1993).CrossRefGoogle Scholar
6. Kamalasanan, M.N., Kumar, N.D. and Chandra, S.: Structural, optical, and dielectric properties of sol-gel derived SrTiO3 thin films. J. Appl. Phys. 74, 679 (1993).CrossRefGoogle Scholar
7. Kobayashi, I., Wakao, Y., Tominaga, K. and Okada, M.: Preparation of SrTiO3 thin films by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 33, 4680 (1994).CrossRefGoogle Scholar
8. Tomio, T., Miki, H., Tabata, H., Kawai, T. and Kawai, S.: Control of electrical conductivity in laser deposited SrTiO3 thin films with Nb doping. J. Appl. Phys. 76, 5886 (1994).CrossRefGoogle Scholar
9. Celik, E., Mutlu, I.H. and Hascicek, Y.S.: Sol-gel processing of buffer layers on Ni tape for YBCO surface coated conductors. IEEE Trans. on Appl. Supercond. 10, 1162 (2000).CrossRefGoogle Scholar
10. Sathyamurthy, S. and Salama, K.: Chemical solution deposition of highly oriented strontium titanate buffer layers for coated conductors. Supercond. Sci. Technol. 13 L1 (2000).CrossRefGoogle Scholar
11. Schwartz, R.W., Clem, P.G., Voigt, J.A., Byhoff, E.R., Van Stry, M., Headley, T.J. and Missert, N.A.: Control of microstructure and orientation in solution-deposited BaTiO3 and SrTiO3 thin films. J. Am. Ceram. Soc. 82, 2359 (1999).CrossRefGoogle Scholar
12. Dawley, J.T., Ong, R.J. and Clem, P.G.: Chemical solution deposition of 〈100〉-oriented SrTiO3 buffer layers on Ni substrates. J. Mater. Res. 17, 1678 (2002).CrossRefGoogle Scholar
13. Dawley, J.T. and Clem, P.G.: Dielectric properties of random and 〈100〉 oriented SrTiO3 and (Ba,Sr)TiO3 thin films fabricated on 〈100〉 nickel tapes. Appl. Phys. Lett. 81, 3028 (2002).CrossRefGoogle Scholar
14. Ong, R.J., Dawley, J.T. and Clem, P.G.: Chemical solution deposition of biaxially oriented (Ba,Sr)TiO3 thin films on 〈100〉 Ni. J. Mater. Res. 18, 2310 (2003).CrossRefGoogle Scholar
15. Frederiskse, H.P.R. and Hosler, W.R.: Hall mobility in SrTiO3 . Phys. Rev. 161, 822 (1967).CrossRefGoogle Scholar
16. Chan, N.H. and Smyth, D.M.: Defect chemistry of donor-doped BaTiO3 . J. Am. Ceram. Soc. 67, 285 (1984).CrossRefGoogle Scholar
17. Pasierb, P., Komornicki, S. and Rekas, M.: Comparison of the chemical diffusion of undoped and Nb-doped SrTiO3 . J. Phys. Chem. Solids 60, 1835 (1999).CrossRefGoogle Scholar
18. Song, C.R. and Yoo, H.I.: Chemical diffusivity of BaTiO3−∂: defect chemical analysis. Phys. Rev. B 61, 3975 (2000).CrossRefGoogle Scholar
19. Tidrow, S.C., Wilber, W.D., Tauber, A., Schauer, S.N., Eckart, D.W., Finnegan, R.D. and Pfeffer, R.L.: Oxygen diffusion through dielectrics: A critical parameter in high critical temperature superconductors multilayer technology. J. Mater. Res. 10, 1622 (1995).CrossRefGoogle Scholar
20. Sakaguchi, I. and Haneda, H.: Oxygen tracer diffusion in single-crystal CaTiO3 . J. Solid State Chem. 124, 195 (1996).CrossRefGoogle Scholar
21. Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).CrossRefGoogle Scholar
22. Siegal, M.P., Dawley, J.T., Clem, P.G. and Overmyer, D.L.: Improving chemical solution deposited YBa2Ca3O7−∂ film properties via high heating rates. Physica C 399, 143 (2003).CrossRefGoogle Scholar
23. Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. 1. J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
24. Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K. and Christen, D.K.: Cube-textured nickel substrates for high-temperature superconductors. Supercond. Sci. Technol. 11, 945 (1998).CrossRefGoogle Scholar