Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T22:41:37.946Z Has data issue: false hasContentIssue false

Optical thermometry and heating based on the upconversion fluorescence from Yb3+/Er3+ co-doped NaLa(MoO4)2 phosphor

Published online by Cambridge University Press:  18 October 2016

Guofeng Liu
Affiliation:
Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
Zhiyi Gao
Affiliation:
Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
Zuoling Fu*
Affiliation:
Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
Zhen Sun
Affiliation:
Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
Xiangtong Zhang
Affiliation:
Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
Zhijian Wu
Affiliation:
State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Jung Hyun Jeong*
Affiliation:
Department of Physics, Pukyong National University, Busan 608-737, South Korea
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

The NaLa(MoO4)2:Yb3+/Er3+ phosphor is synthesized through hydrothermal method with the further calcinations. The intense green upconversion (UC) emission is observed when it is excited by 980 nm pump power. Then we investigate the mechanism of UC emission based on the power dependent upconversion luminescence (UCL) spectra. Temperature sensing performance based on the Stark levels (2H11/2/4S3/2) of Er3+ is estimated through investigating temperature-dependent UCL spectra from 298 K to 573 K. And the maximum value of sensor sensitivity based on FIR is approximately 0.00474 K−1. Moreover, the variations of UCL intensities from 2H11/2/4S3/24I15/2 transitions have been monitored with increasing pump power, which suggests that the pump energy can be absorbed by sample and heat it. In addition, the internal temperature of materials can be estimated by FIR technique. All the experimental results indicate that the phosphor has good potential in optical temperature sensing and optical heating.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Muhr, V., Wilhelm, S., Hirsch, T., and Wolfbeis, O.S.: Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Acc. Chem. Res. 47, 3481 (2014).Google Scholar
Ge, X.Q., Dong, L., Sun, L.N., Song, Z.M., Wei, R.Y., Shi, L.Y., and Chen, H.G.: New nanoplatforms based on UCNPs linking with polyhedral oligomeric silsesquioxane (POSS) for multimodal bioimaging. Nanoscale 7, 7206 (2016).Google Scholar
Wei, R.Y., Wei, Z.W., Sun, L.N., Zhang, J.Z., Liu, J.L., Ge, X.Q., and Shi, L.Y.: Nile red derivative-modified nanostructure for upconversion luminescence sensing and intracellular detection of Fe3+ and MR imaging. ACS Appl. Mater. Interfaces 8, 400 (2016).Google Scholar
Chen, W.B., Shi, C.J., Tao, Y., Ji, M.X., Zheng, S.H., Sang, X.W., Liu, X.F., and Qiu, J.R.: Optical temperature sensing with minimized heating effect using core–shell upconversion nanoparticles. RSC Adv. 6, 21540 (2016).Google Scholar
Matioli, E., Brinkley, S., Kelchner, K.M., Hu, Y.L., Nakamura, S., DenBaars, S., Speck, J., and Weisbuch, C.: High-brightness polarized light-emitting diodes. Light: Sci. Appl. 1, 22 (2012).CrossRefGoogle Scholar
Wang, G.F., Peng, Q., and Li, Y.D.: Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200 (2009).Google Scholar
Li, P., Peng, Q., and Li, Y.D.: Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv. Mater. 21, 1945 (2009).Google Scholar
Wang, F. and Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009).Google Scholar
Sun, L.N., Mai, W.P., Dang, S., Qiu, Y.N., Deng, W., Shi, L.Y., Yan, W., and Zhang, H.J.: Near-infrared luminescence of periodic mesoporous organosilicas grafted with lanthanide complexes based on visible-light sensitization. J. Mater. Chem. 22, 5121 (2012).Google Scholar
Wang, X., Lin, H., Yang, D., Lin, L., and Pun, E.Y.B.: Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses. J. Appl. Phys. 101, 113535 (2007).Google Scholar
Gouveia-Neto, A.S., Bueno, L.A., do Nascimento, R.F., da Silva, E.A., da Costa, A.B., and do Nascimento, V.B.: White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass. Appl. Phys. Lett. 91, 091114 (2007).Google Scholar
Li, L., Guo, C.F., Jiang, S., Agrawal, D.K., and Li, T.: Green up-conversion luminescence of Yb3+–Er3+ co-doped CaLa2ZnO5 for optically temperature sensing. RSC Adv. 4, 6391 (2014).Google Scholar
Yang, Y.M., Mi, C., Yu, F., Su, X.Y., Guo, C.F., Li, G., Zhang, J., Liu, L.L., Liu, Y.Z., and Li, X.D.: Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor. Ceram. Int. 40, 9875 (2014).Google Scholar
Liu, G.F., Fu, L.L., Gao, Z.Y., Yang, X.X., Fu, Z.L., Wang, Z.Y., and Yang, Y.M.: Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3, YAG and LaAlO3 phosphors. RSC Adv. 5, 51820 (2015).Google Scholar
Hizhnyi, Y., Chornii, V., Nedilko, S., Slobodyanik, M., Terebilenko, K., Boyko, V., Gomenyuk, O., and Sheludko, V.: Luminescence spectroscopy of Ln-doped Bi-containing phosphates and molybdates. Radiat. Meas. 90, 314 (2016).Google Scholar
Dunaeva, E.E., IvIeva, L.I., Doroshenko, M.E., Zverev, P.G., Nekhoroshikh, A.V., and Osiko, V.V.: Synthesis, characterization, spectroscopy, and laser operation of SrMoO4 crystals co-doped with Tm3+ and Ho3+ . J. Cryst. Growth 432, 1 (2015).Google Scholar
Li, A.M., Li, J.Z., Chen, Z.Q., Wu, Y.H., Wu, L.D., Lu, G.J., Wang, C.H., and Zhang, G.: Growth and spectral properties of Yb3+/Ho3+ co-doped NaGd(MoO4)(2) crystal. Mater. Express 5, 527 (2015).Google Scholar
Mani, K.P., Vimal, G., Biju, P.R., Joseph, C., Unnikrishnan, N.V., and Ittyachen, M.A.: Structural and spectral investigation of terbium molybdate nanophosphor. Spectrochim. Acta. A 148, 412 (2015).Google Scholar
Singh, S.K., Kumar, K., and Rai, S.B.: Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Spectrochim. Acta, Part A 149, 16 (2009).Google Scholar
Dong, B., Liu, D.P., Wang, X.J., Yang, T., and Miao, S.M.: Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3 . Appl. Phys. Lett. 90, 181117 (2007).Google Scholar
Li, C., Dong, B., Li, S.F., and Song, C.L.: Er3+–Yb3+ co-doped silicate glass for optical temperature sensor. Chem. Phys. Lett. 443, 426 (2007).Google Scholar
Zhou, S.Q., Li, C.R., Liu, Z.F., Li, S.F., and Song, C.L.: Thermal effect on up-conversion in Er3+/Yb3+ co-doped silicate glass. Opt. Mater. 30, 513 (2007).Google Scholar
Lei, Y.Q., Song, H.W., Yang, L.M., Yu, L.X., Liu, Z.X., Pan, G.H., Bai, X., and Fan, L.B.: Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires. J. Chem. Phys. 123, 174710 (2005).Google Scholar
Zheng, L.J., Gao, X.Y., Liu, H.L., Li, B., and Xu, C.X.: The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping. Spectrosc. Spect. Anal. 33, 151 (2013).Google Scholar
Verma, R.K. and Rai, S.B.: Laser induced optical heating from Yb3+/Ho3+:Ca12Al14O33 and its applicability as a thermal probe. J. Quant. Spectrosc. Radiat. Transfer 13, 1594 (2012).Google Scholar
Cai, J.J., Wei, X.T., Hu, F.F., Cao, Z.M., Zhao, L., Chen, Y.H., Duan, C.K., and Yin, M.: Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals. Ceram. Int. 42, 13990 (2016).Google Scholar
Verma, R.K., Rai, A., Kumar, K., and Rai, S.B.: Up and down conversion fluorescence studies on combustion synthesized Yb3+/Yb2+:MO–Al2O3 (M = Ca, Sr and Ba) phosphors. J. Lumin. 130, 1248 (2010).CrossRefGoogle Scholar
Liao, J.S., Qiu, B., and Lai, H.S.: Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors. J. Lumin. 129, 668 (2009).Google Scholar
Li, Y., Wang, G.F., Pan, K., Qu, Y., Liu, S., and Feng, L.: Formation and down/up conversion luminescence of Ln3+ doped NaY(MoO4)2 microcrystals. Dalton Trans. 42, 3366 (2013).Google Scholar
Gao, Z.Y., Wang, Z.Y., Fu, L.L., Yang, X.X., Fu, Z.Y., Wu, Z.J., and Jeong, J.H.: NaLa(MoO4)2:RE3+ (RE3+ = Eu3+, Sm3+, Er3+/Yb3+) microspheres: The synthesis and optical properties. Mater. Res. Bull. 70, 779 (2015).Google Scholar
Xu, Z.H., Li, C.X., Li, G.G., Chai, R.T., Peng, C., Yang, D.M., and Lin, J.: Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: Hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C 114, 2573 (2010).Google Scholar
Liu, S.S., Yang, D.P., Ma, D.K., Wang, S., Tang, T.D., and Huang, S.M.: Single-crystal NaY(MoO4)2 thin plates with dominant facets for efficient photocatalytic degradation of dyes under visible light irradiation. Chem. Commun. 47, 8013 (2011).Google Scholar
Li, Y., Wang, G.F., Pan, K., Zhou, W., Wang, C., Fan, N.Y., Chen, Y.J., Feng, Q.M., and Zhao, B.B.: Controlled synthesis and luminescence properties of rhombic NaLn(MoO4)2 submicrocrystals. Cryst. Eng. Comm 14, 5015 (2012).Google Scholar
Gomes, L., Linhares, H.M.S.M.D., Hmdmd Ichikawa, R.U., Martinez, L.G., and Baldochi, S.L.: Luminescence properties of Yb:Er:KY3F10 nanophosphor and thermal treatment effects. Opt. Mater. 54, 57 (2016).CrossRefGoogle Scholar
Chung, J.H., Ryu, J.H., Eun, J.W., Lee, J.H., Lee, S.Y., Hes, T.H., Choi, B.G., and Shim, K.B.: Green upconversion luminescence from poly-crystalline Yb3+, Er3+ co-doped CaMoO4 . J. Alloys Compd. 522, 30 (2012).Google Scholar
Zhang, J., Wang, S.W., Rong, T.J., and Chen, L.D.: Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders. J. Am. Ceram. Soc. 87, 1072 (2004).Google Scholar
Zeng, H.D., Lin, Z.Y., Zhang, Q.A., Chen, D.P., Liang, X.L., Xu, Y.S., and Chen, G.R.: Green emission from Eu2+/Dy3+ codoped SrO–Al2O3–B2O3 glass-ceramic by ultraviolet light and femtosecond laser irradiation. Mater. Res. Bull. 46, 319 (2011).Google Scholar
Wei, T., Dong, Z., Zhao, C.Z., Ma, Y.J., Zhang, T.B., Xie, Y.F., Zhou, Q.J., and Li, Z.P.: Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18 . Ceram. Int. 42, 5537 (2016).Google Scholar
Li, J., Hao, Z.D., Zhang, X., Luo, Y.S., Zhao, J.H., Lu, S.Z., Cao, J., and Zhang, J.H.: Hydrothermal synthesis and upconversion luminescence properties of beta-NaGdF4:Yb3+/Tm3+ and beta-NaGdF4:Yb3+/Ho3+ submicron crystals with regular morphologies. J. Colloid Interface Sci. 392, 206 (2013).CrossRefGoogle ScholarPubMed
Li, X.L., Xue, Z.L., and Liu, H.R.: Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4:Yb/Er up-conversion nano-particles for multi-color tuning. J. Alloys Compd. 681, 379 (2016).Google Scholar
Li, D.G., Qin, W.P., Aidilibike, T., Zhang, P., Liu, S.H., Wang, L.L., and Li, S.W.: Enhanced upconversion emission and magnetization in Yb3+–Er3+/Ho3+ codoped Gd2O3 nanocrystals by introducing Zn2+ ions. J. Alloys Compd. 675, 31 (2016).Google Scholar
León-Luis Sergio, F., Rodríguez-Mendozaa, U., Martína Inocencio, R., Lalla, E., and Lavín, V.: Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sens. Actuators, B. 176, 1167 (2013).Google Scholar
Adhikari, R., Choi, J., Narro-García, R., DelaRosa, E., Tohru, S., and Soo Wohn, L.: Understanding the infrared to visible upconversion luminescence properties of Er3+/Yb3+ co-doped BaMoO4 nanocrystals. J. Solid State Chem. 216, 36 (2014).Google Scholar
Qin, F., Zhao, H., Cai, W., Zhang, Z.G., and Cao, W.W.: A precise Boltzmann distribution law for the fluorescence intensity ratio of two thermally coupled levels. Appl. Phys. Lett. 108, 241907 (2016).Google Scholar
Wade, S.A., Collins, S.F., and Baxter, G.W.: Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 94, 4743 (2003).Google Scholar
Lu, H.Y., Hao, H.Y., Shi, G., Gao, Y.C., Wang, R.X., Song, Y.L., Wang, Y.X., and Zhang, X.R.: Optical temperature sensing in beta-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels. RSC Adv. 6, 55307 (2016).Google Scholar
Kumar, A., Tiwari, S.P., Kumar, K., and Rai, V.K.: Structural and optical properties of thermal decomposition assisted Gd2O3:Ho3+/Yb3+ upconversion phosphor annealed at different temperatures. Spectrochim. Acta, Part A 167, 134 (2016).Google Scholar
Dong, B., Cao, B.S., and He, Y.Y.: Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24, 1987 (2012).Google Scholar
León-Luis, S.F., Rodríguez-Mendoza, U.R., Lalla, E., and Lavín, V.: Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass. Sens. Actuators, B 158, 208 (2011).Google Scholar
Cao, B.S., He, Y.Y., Feng, Z.Q., Li, Y.S., and Dong, B.: Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo: Yb2Ti2O7 nanophosphor. Sens. Actuators, B 159, 8 (2011).Google Scholar
Challenor, M., Gong, P.J., Lorenser, D., Fitzgerald, M., Dunlop, S., Sampson, D.D., and Iyer, K.S.: Iron oxide-induced thermal effects on solid-state upconversion emissions in NaYF4:Yb,Er nanocrystals. ACS Appl. Mater. Interfaces. 5, 7875 (2013).Google Scholar
Kikhomirov, V.K., Driesen, K., Rodriguez, V.D., Gredin, P., Mortier, M., and Moshchalkov, V.V.: Optical nanoheater based on the Yb3+–Er3+ co-doped nanoparticles. Opt. Express 17, 11794 (2009).Google Scholar
Wang, J., Hao, J.H., and Tanner, P.A.: Luminous and tunable white-light upconversion for YAG (Yb3Al5O12) and (Yb,Y)2O3 nanopowders. Opt. Lett. 35, 3922 (2010).Google Scholar
Singh, A.K., Singh, S., Kumar, D., Rai, S.B., and Kumar, K.: Light-into-heat conversion in La2O3:Er3+–Yb3+ phosphor: An incandescent emission. Opt. Lett. 37, 776 (2012).Google Scholar