Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T22:52:41.405Z Has data issue: false hasContentIssue false

Optical spectroscopic study of the radio-frequency oxygen thermal plasma evaporated YBa2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

Shigenori Yuhya
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome, 1-chome, Koto-ku, Tokyo 135, Japan
Jiro Tsujino
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome, 1-chome, Koto-ku, Tokyo 135, Japan
Noriyuki Tatsumi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome, 1-chome, Koto-ku, Tokyo 135, Japan
Yuh Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome, 1-chome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Optical emission spectroscopy of the rf thermal plasma evaporated YBa2Cu3O7−x has been investigated. The deposited films with the nearly stoichiometric composition could be obtained by using Y-rich powder. From the optical emission spectra, O, Y, Y+, Ba, Ba+, Cu, and YO as the emitting species were observed. The excitation temperature was lower for Y+ than for the other dissociated elements. The relative intensity for YO of a suboxide became larger with a lower plasma torch. It is thought that the deposited film that is poor in Y results from YO sticking to the substrate rather than Y or Y+.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koren, G., Gupta, A., and Baseman, J., Appl. Phys. Lett. 53, 426 (1989).Google Scholar
2Enomoto, Y., Murakami, T., Suzuki, M., and Moriwaki, K., Jpn. J. Appl. Phys. 26, L1284 (1987).CrossRefGoogle Scholar
3Kanehori, K., Sugii, N., and Miyauchi, K., Thin Solid Films 182, 265 (1989).CrossRefGoogle Scholar
4Shah, A., Patel, S., Narumi, E., and Shaw, D. T., Appl. Phys. Lett. 57, 1452 (1990).CrossRefGoogle Scholar
5Terashima, K., Eguchi, K., Yoshida, T., and Akashi, K., Appl. Phys. Lett. 52, 1274 (1988).CrossRefGoogle Scholar
6Terashima, K., Komaki, H., and Yoshida, T., IEEE Trans. Plasma Sci. 18, 980 (1990).CrossRefGoogle Scholar
7Yuhya, S., Kikuchi, K., Shiohara, Y., Terashima, K., and Yoshida, T., J. Mater. Res. 7, 2673 (1992).CrossRefGoogle Scholar
8Boulos, M. I., IEEE Trans. Plasma Sci. PS-4, 28 (1976).Google Scholar
9Gottsho, R. A. and Miller, T. A., Pure Appl. Chem. 56, 189 (1984).Google Scholar
10Weimer, W.A., Appl. Phys. Lett. 52, 2171 (1988).CrossRefGoogle Scholar
11Walkup, R.E., Seanger, K.L., and Selwin, G.S., J. Chem. Phys. 84, 2668 (1986).CrossRefGoogle Scholar
12Takamura, Y., Hirokawa, Y., Komaki, H., Terashima, K., and Yoshida, T., Physica C 190, 122 (1991).CrossRefGoogle Scholar
13Hammond, R.H. and Bormann, R., Physica C 162-164, 703 (1989).CrossRefGoogle Scholar
14Pearse, R. W. B. and Gaydon, A. G., The Identification of Molecular Spectra (Chapman and Hall, New York, 1976).CrossRefGoogle Scholar
15MIT Wavelength Tables, edited by Phelps, F. M. III (MIT Press, Cambridge, MA 1982), Vol. 2.Google Scholar
16Terashima, K., Akagi, T., Komaki, H., and Yoshida, T., J. Appl. Phys. 71, 3427 (1992).CrossRefGoogle Scholar
17Ying, Q.Y., Shaw, D.T., and Kwok, H. S., Appl. Phys. Lett. 53, 1762 (1988).CrossRefGoogle Scholar
18Ebihara, K., Kanazawa, S., Ikegami, T., and Shiga, M., J. Appl. Phys. 68, 1151 (1990).CrossRefGoogle Scholar
19Takeuchi, S., Yamada, W., Ito, M., and Takeda, K., Mater. Trans. JIM 30, 942 (1989).Google Scholar