Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T21:08:21.891Z Has data issue: false hasContentIssue false

The optical properties of Cu-Ni nanoparticles produced via pulsed laser dewetting of ultrathin films: The effect of nanoparticle size and composition on the plasmon response

Published online by Cambridge University Press:  01 January 2011

Y. Wu
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
J.D. Fowlkes
Affiliation:
Center for Nanophase Materials Sciences Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
P.D. Rack*
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996; and Center for Nanophase Materials Sciences Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thin film Cu-Ni alloys ranging from 2–8 nm were synthesized and their optical properties were measured as-deposited and after a laser treatment which dewet the films into arrays of spatially correlated nanoparticles. The resultant nanoparticle size and spacing are attributed to a laser induced spinodal dewetting process. The evolution of the spinodal dewetting process is investigated as a function of the thin film composition which ultimately dictates the size distribution and spacing of the nanoparticles. The optical measurements of the copper rich alloy nanoparticles reveal a signature absorption peak suggestive of a plasmon peak that red-shifts with increasing nanoparticle size and blue-shifts and dampens with increasing nickel concentration.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Becker, J., Grun, G., Seemann, R., Mantz, H., Jacobs, K., Mecke, K.R., and Blosseya, R.: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003).CrossRefGoogle ScholarPubMed
2.Bischof, J., Scherer, D., Herminghaus, S., and Leiderer, P.: Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77, 8 (1996).CrossRefGoogle ScholarPubMed
3.Henley, S.J., Carey, J.D., and Silva, S.R.P.: Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408 (2005).CrossRefGoogle Scholar
4.Trice, J., Thomas, D., Favazza, C., Sureshkumar, R., and Kalyanaraman, R.: Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 75, 235439 (2007).CrossRefGoogle Scholar
5.Trice, J., Favazza, C., Thomas, D., Garcia, H., Kalyanaraman, R., and Sureshkumar, R.: Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 101, (2008) 017802.CrossRefGoogle ScholarPubMed
6.Favazza, C., Kalyanaraman, R., and Sureshkumar, R.: Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17, 4229 (2006).CrossRefGoogle ScholarPubMed
7.Krishna, H., Shirato, N., Favazza, C., and Kalyanaraman, R.: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136 (2009).CrossRefGoogle ScholarPubMed
8.Krishna, H., Sachan, R., Strader, J., Favazza, C., Khenner, M., and Kalyanaraman, R.: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21, 155601 (2010).CrossRefGoogle ScholarPubMed
9.Gedvilas, M., Raciukaitis, G., and Regelskis, K.: Self-organization in a chromium thin film under laser irradiation. Appl. Phys. A 93, 203 (2008).CrossRefGoogle Scholar
10.Yasuhiko, K. and Takahisa, K.: Nanoparticle formation in Au thin films by electron-beam-induced dewetting. Nanotechnology 19, 255605 (2008).Google Scholar
11.Rack, P.D., Guan, Y.F., Fowlkes, J.D., Melechko, A.V., and Simpson, M.L.: Pulsed laser dewetting of patterned thin metal films: A means of directed assembly. Appl. Phys. Lett. 92, 223108 (2008).CrossRefGoogle Scholar
12.Fowlkes, J.D., Wu, Y., and Rack, P.D.: Directed assembly of bimetallic nanoparticles by pulsed-laser-induced dewetting: A unique nanoscale time and length scale regime. ACS Appl. Mater. Interfaces 2, 7 (2010).CrossRefGoogle Scholar
13.Kondic, L., Diez, J., Rack, P.D., Guan, Y., and Fowlkes, J.D.: Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 79, 026302 (2009).CrossRefGoogle ScholarPubMed
14.Wu, Y., Fowlkes, J.D., Rack, P.D., Kondic, L., and Diez, J.: On the breakup of patterned nanoscale copper rings into nanoparticles: Competing instability and transport mechanisms. Langmuir 26(14), 11972 (2010).CrossRefGoogle ScholarPubMed
15.Lin, C., Jiang, L., Zhou, J., Xiao, H., Chen, S., and Tsai, H.: Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering. Opt. Lett. 35, 7 (2010).CrossRefGoogle ScholarPubMed
16.Krishna, H., Favazza, C., Gangopadhyay, A.K., and Kalyanaraman, R.: Functional nanostructures through nanosecond laser dewetting of thin metal films. JOM 60, 9 (2008).CrossRefGoogle Scholar
17.Klein, K.L., Melechko, A.V., Rack, P.D., Fowlkes, J.D., Meyer, H.M., and Simpson, M.L.: Cu-Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers. Carbon 43, 1857, (2005).CrossRefGoogle Scholar
18.Fowlkes, J.D., Fitz-Gerald, J.M., and Rack, P.D.: Ultraviolet emitting (Y1– xGd x)2O3–δ thin films deposited by radio frequency magnetron sputtering: Combinatorial modeling, synthesis, and rapid characterization. Thin Solid Films 510, 68 (2006).CrossRefGoogle Scholar
19.Favazza, C., Kalyanaraman, R., and Sureshkumar, R.: Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).CrossRefGoogle Scholar
20.Favazza, C., Trice, J., Krishna, H., and Kalyanaraman, R.: Effect of surface roughness on laser-driven instability dewetting of ultrathin Co films. Proc. SPIE 7039, 703907 (2008).CrossRefGoogle Scholar
21.Seemann, R., Herminghaus, S., and Jacobs, K.: Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 13, 4925 (2001).CrossRefGoogle Scholar
22.González, A.G., Diez, J., Gratton, R., and Gomba, J.: Rupture of a fluid strip under partial wetting conditions. Europhys. Lett. 77, 44001 (2007).CrossRefGoogle Scholar
23.McCallum, M.S., Voorhees, P.W., Miksis, M.J., Davis, S.H., and Wong, H.: Capillary instabilities in solid thin films: Lines. J. Appl. Phys. 79, 7604 (1996).CrossRefGoogle Scholar
24.Amekura, H., Takeda, Y., and Kishimoto, N.: Criteria for surface plasmon resonance energy of metal nanoparticles in silica glass. Nucl. Instrum. Methods Phys. Res., Sect. B 222, 96 (2004).CrossRefGoogle Scholar
25.Picciotto, A., Pucker, G., Torrisi, L., Bellutti, P., Caridi, F., and Bagolini, A.: Evidence of plasmon resonances of nickel particles deposited by pulsed laser ablation. Radiat. Eff. Defects Solids 163, 513 (2008).CrossRefGoogle Scholar
26.Chan, G.H., Zhao, J., Hicks, E.M., Schatz, G.C., and Van Duyne, R.P.: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 7 (2007).CrossRefGoogle Scholar
27.Liu, Y.L., Liu, Y.C., Mu, R., Yang, H., Shao, C.L., Zhang, J.Y., Lu, Y.M., Shen, D.Z., and Fan, X.W.: The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. Sci. Technol. 20, 44 (2005).CrossRefGoogle Scholar
28.Ghodselahi, T., Vesaghi, M.A., and Shafiekhani, A.: Study of surface plasmon resonance of Cu and Cu2O core-shell nanoparticles by Mie theory. J. Phys. D: Appl. Phys. 42, 015308 (2009).CrossRefGoogle Scholar
29.Yang, M. and Zhu, J.J.: Spherical hollow assembly composed of Cu2O nanoparticles. J. Cryst. Growth 256, 134 (2003).CrossRefGoogle Scholar
30.Zhang, J., Liu, H., Wang, Z.A., and Ming, N.: Preparation and optical properties of silica and Ag-Cu alloy core-shell composite colloids. J. Solid State Chem. 180, 1291 (2007).CrossRefGoogle Scholar
31.Magruder, R.H. III, and Wittig, J.E.: Wavelength tenability of the surface plasmon resonance of nanosize metal colloids in glass. J. Non-Cryst. Solids 163, 162 (1993).CrossRefGoogle Scholar