Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T15:18:13.099Z Has data issue: false hasContentIssue false

Optical measurement of the elastic moduli and thermal diffusivity of a C–N film

Published online by Cambridge University Press:  03 March 2011

Yongwu Yang
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Keith A. Nelson
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Farshid Adibi
Affiliation:
BIRL Industrial Research Laboratory, Northwestern University, 1081 Maple Street, Evanston, Illinois 60202
Get access

Abstract

The elastic properties of carbon nitride (CNx) film adhered to a silicon substrate were characterized through impulsive stimulated thermal scattering (ISTS). The lowest-order pseudo-Rayleigh acoustic mode of the film was excited and monitored optically. From the measured acoustic phase velocities, the elastic moduli of the film were determined. The ISTS technique also permits measurements of the CNx thermal diffusivity. The noninvasive optical measurements described can provide a useful guide to refinements in thin film fabrication procedures and for optimization of mechanical and thermal transport properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cohen, M. L., Phys. Rev. B 32, 7988 (1985).Google Scholar
2Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).Google Scholar
3Han, H. X. and Feldman, B. J., Solid State Commun. 65, 921 (1988).Google Scholar
4Maya, L. and Harris, L. A., J. Am. Ceram. Soc. 73, 1912 (1990).Google Scholar
5Wixom, M. R., J. Am. Ceram. Soc. 73, 1973 (1990).CrossRefGoogle Scholar
6Niu, C., Lu, Y. Z., and Leiber, CM., Science 261, 334 (1993).Google Scholar
7Yan, Y-X., Cheng, L-T., and Nelson, K.A., J. Chem. Phys. 88, 6477 (1988); Cheng, L-T., Yan, Y-X., and Nelson, K.A., J. Chem. Phys. 91, 6052 (1989); Duggal, A. and Nelson, K. A., J. Chem. Phys. 94, 7677 (1991); Silence, S., Duggal, A., Dhar, L., and Nelson, K. A., J. Chem. Phys. 96, 5448 (1992); Halalay, I. and Nelson, K.A., J. Chem. Phys. 97, 3557 (1992).Google Scholar
8Duggal, A. R., Rogers, J. A., and Nelson, K. A., J. Appl. Phys. 72, 2823 (1992); Duggal, A.R., Rogers, J. A., Nelson, K. A., and Rothschild, M., Appl. Phys. Lett. 60, 692 (1992).Google Scholar
9Rogers, J. A. and Nelson, K. A., J. Appl. Phys. 75, 1534 (1994).CrossRefGoogle Scholar
10Rogers, J. A., Yang, Y., and Nelson, K. A., Appl. Phys. A 58, 523 (1994).Google Scholar
11Halalay, I. C., Yang, Y., and Nelson, K. A., J. Non-Cryst. Solids (1994, in press).Google Scholar
12Farnell, G. W. and Adler, E. L., in Physical Acoustics, Principles and Methods, edited by Mason, W. P. and Thurston, R. N. (Academic, New York, 1972), Vol. 9, p. 35.Google Scholar
13Sproul, W. D., Rudnik, P. J., and Gogol, C. A., Thin Solid Films 171, 171 (1989).Google Scholar
14Marshall, C. D., Fishman, M., and Fayer, M. D., Phys. Rev. B 43, 2696 (1991).Google Scholar