Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:20:11.484Z Has data issue: false hasContentIssue false

Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes

Published online by Cambridge University Press:  03 March 2011

Chulho Song
Affiliation:
Department of Chemistry, University of Arkansas, Little Rock, Arkansas 72204
Pehr E. Pehrsson
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375-5000
Wei Zhao*
Affiliation:
Department of Chemistry, University of Arkansas, Little Rock, Arkansas 72204
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We recently observed that surfactant sodium dodecyl sulfate (SDS)-encased HiPco single-walled carbon nanotubes (SWNTs) respond optically to hydrogen peroxide (H2O2) in the near-infrared region. In this report, we demonstrate that SDS-encased SWNTs immobilized with glucose oxidase (GOx) can be used to optically detect an enzymatic reaction of glucose based on their H2O2 sensitivity as well as pH sensitivity. Only the enzymatic product H2O2 induces the SWNT near-infrared spectral changes in buffer solutions (pH = 6.0), but both H2O2 and gluconic acid products do this in unbuffered solutions. The SWNT optical response to glucose possesses sensitivity and selectivity similar to an electrochemical method using carbon nanotube nanoelectrode arrays. Our results suggest possible carbon nanotube-based optical tools for molecular recognition applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95 (1998).CrossRefGoogle ScholarPubMed
2.O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B., Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).CrossRefGoogle ScholarPubMed
3.Star, A., Steuerman, D.W., Heath, J.R., Stoddart, J.F.: Starched carbon nanotubes. Angew. Chem., Int. Ed. Engl. 41, 2508 (2002).3.0.CO;2-A>CrossRefGoogle ScholarPubMed
4.Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., Mclean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338 (2003).CrossRefGoogle ScholarPubMed
5.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E.: Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519 (2003).CrossRefGoogle ScholarPubMed
6.O’Connell, M.J., Eibergen, E.E., Doorn, S.K.: Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat. Mater. 4, 412 (2005).CrossRefGoogle ScholarPubMed
7.Doorn, S.K., Fields, R.E., Hu, H., Hamon, M.A., Haddon, R.C., Selegue, J.P., Majidi, V.: High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 124, 3169 (2002).CrossRefGoogle ScholarPubMed
8.Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F.: Bulk separation of metallic from semiconducting single wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370 (2003).CrossRefGoogle Scholar
9.Krupke, R., Hennrich, F., Lohneysen, H.V., Kappes, M.M.: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344 (2003).CrossRefGoogle ScholarPubMed
10.Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N.W.S., Shim, M., Li, Y., Kim, W., Utz, P.J., Dai, H.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A. 100, 4984 (2003).CrossRefGoogle ScholarPubMed
11.An, L., Fu, Q., Lu, C., Liu, J.: A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520 (2004).CrossRefGoogle ScholarPubMed
12.Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., Rusling, J.F.: Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commu. 5, 408 (2003).CrossRefGoogle Scholar
13.Hu, C., Zhang, Y., Bao, G., Zhang, Y., Liu, M., Wang, Z.L.: DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 109, 20072 (2005).CrossRefGoogle ScholarPubMed
14.Besteman, K., Lee, J-O., Wiertz, F.G.M., Heering, H.A., Dekker, C.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727 (2003).CrossRefGoogle Scholar
15.Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J-P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388 (2005).CrossRefGoogle ScholarPubMed
16.Zhao, W., Song, C., Pehrsson, P.E.: Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 124, 12418 (2002).CrossRefGoogle ScholarPubMed
17.Dukovic, G., White, B.E., Zhou, Z., Wang, F., Jockusch, S., Steigerwald, M.L., Heinz, T.F., Friesner, R.A., Turro, N.J., Brus, L.E.: Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269 (2004).CrossRefGoogle ScholarPubMed
18.Zheng, M., Diner, B.A.: Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 126, 15490 (2004).CrossRefGoogle ScholarPubMed
19.Strano, M.S., Huffman, C.B., Moore, V.C., O’Connell, M.J., Haroz, E.H., Hubbard, J., Miller, M., Rialon, K., Kittrell, C., Ramesh, S., Hauge, R.H., Smalley, R.E.: Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979 (2003).CrossRefGoogle Scholar
20.Kelley, K., Pehrsson, P.E., Ericson, L.M., Zhao, W.: Optical pH response of DNA wrapped HiPco carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1029 (2005).CrossRefGoogle ScholarPubMed
21.Song, C., Pehrsson, P.E., Zhao, W.: Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109, 21634 (2005).CrossRefGoogle ScholarPubMed
22.Chang, M.C.Y., Pralle, A., Isacoff, E.Y., Chang, C.J.: A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392 (2004).CrossRefGoogle ScholarPubMed
23.Turner, A.P.F., Karube, I., Wilson, G.S.: Biosensors: Fundamentals and Applications (Oxford Univ. Press, New York, 1987).Google Scholar
24.Henry, C.M.: Getting under the skin: Implantable glucose sensors. Anal. Chem. 70, 594A (1998).CrossRefGoogle ScholarPubMed
25.Cass, A.E.G., Davis, G., Francis, G.D., Hill, H.A., Aston, W.J., Higgins, I.J., Plotkin, E.V., Scott, L.D.L., Turner, A.P.F.: Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56, 667 (1984).CrossRefGoogle ScholarPubMed
26.Bindra, D.S., Zhang, Y., Wilson, G.S., Sternberg, R., Thevenot, D.R., Moatti, D., Reach, G.: Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem. 63, 1692 (1991).CrossRefGoogle ScholarPubMed
27.Rhodes, R.K., Shults, M.C., Updike, S.J.: Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital stimulation analysis. Anal. Chem. 66, 1520 (1994).CrossRefGoogle ScholarPubMed
28.Csoregi, E., Schmidtke, D.W., Heller, A.: Design and optimization of a selective subcutaneously implantable glucose electrode based on “wired” glucose oxidase. Anal. Chem. 67, 1240 (1995).CrossRefGoogle ScholarPubMed
29.Wang, J., Zhang, X.: Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal. Chem. 73, 844 (2001).CrossRefGoogle ScholarPubMed
30.Lin, Y., Lu, F., Tu, Y., Ren, Z.: Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191 (2004).CrossRefGoogle Scholar
31.Wang, J., Deo, R.P., Poulin, P., Mangey, M.: Carbon nanotube fiber microelectrodes. J. Am. Chem. Soc. 125, 14706 (2003).CrossRefGoogle ScholarPubMed
32.Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638 (2004).CrossRefGoogle ScholarPubMed
33.Benedict, B., Pehrsson, P.E., Zhao, W.: Optically sensing additional sonication effects on dispersed HiPco nanotubes in aerated water. J. Phys. Chem. B 109, 7778 (2005).CrossRefGoogle ScholarPubMed
34.Wade, L.G. Jr.: Organic Chemistry (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987).Google Scholar
35.Awichi, A., Tee, E.M., Srikanthan, G., Zhao, W.: Identification of overlapped near-infrared bands of glucose anomers using two-dimensional near-infrared and middle-infrared correlation spectroscopy. Appl. Spectrosc. 56, 897 (2002).CrossRefGoogle Scholar
36.Zhao, W., Song, C., Zheng, B., Liu, J., Viswanathan, T.: Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J. Phys. Chem. B 106, 293 (2002).CrossRefGoogle Scholar
37.Weisman, R.B., Bachilo, S.M.: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical kataura plot. Nano Lett. 3, 1235 (2003).CrossRefGoogle Scholar
38.Azamian, B.R., Davis, J.J., Coleman, K.S., Bagshaw, C.B., Green, M.L.H.: Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 12664 (2002).CrossRefGoogle ScholarPubMed
39.Karajanagi, S.S., Vertegel, A.A., Kane, R.S., Dordick, J.S.: Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20, 11594 (2004).CrossRefGoogle ScholarPubMed
40.Barone, P.W., Baik, S., Heller, D.A., Strano, M.S.: Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86 (2005).CrossRefGoogle ScholarPubMed
41.Jones, M.N., Manley, P., Wilkinson, A.: The dissociation of glucose oxidase by sodium n-dodecyl sulphate. Biochem. J. 203, 285 (1982).CrossRefGoogle ScholarPubMed
42.Prasad, P.N.: Introduction to Biophotonics (John Wiley, New York, 2003).CrossRefGoogle Scholar
43.Henry, C.M.: Near-IR gets the job done. Anal. Chem. 71, 625A (1999).CrossRefGoogle Scholar
44.Mattu, M.J., Small, G.W., Arnold, M.A.: Determination of glucose in a biological matrix by multivariate analysis of multiple band-pass-filtered fourier transform near-infrared interferograms. Anal. Chem. 69, 4695 (1997).CrossRefGoogle Scholar
45.Badugu, R., Lakowicz, J.R., Geddes, C.D.: Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 76, 610 (2004).CrossRefGoogle ScholarPubMed
46.Bindra, D.S., Wilson, G.S.: Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal. Chem. 61, 2566 (1989).CrossRefGoogle Scholar
47.Law, M., Sirbuly, D.J., Johnson, J.C., Goldberger, J., Saykally, R.J., Yang, P.: Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269 (2004).CrossRefGoogle ScholarPubMed
48.Tong, L., Gattass, R.R., Ashcom, J.B., He, S., Lou, J., Shen, M., Maxwell, I., Mazur, E.: Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816 (2003).CrossRefGoogle ScholarPubMed
49.Kasili, P.M., Song, J.M., Vo-Dinh, T.: Optical sensor for the detection of caspase-9 activity in a single cell. J. Am. Chem. Soc. 126, 2799 (2004).CrossRefGoogle Scholar