Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T16:49:35.205Z Has data issue: false hasContentIssue false

Optical Characterization of GaAs/Si Layers Grown by the Conformal Method (Confined Lateral Epitaxial Growth)

Published online by Cambridge University Press:  31 January 2011

A. M. Ardila
Affiliation:
Departamento de FÁsica, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Santa Fe de Bogotá, Colombia and Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47011, Spain
O. Martínez
Affiliation:
Departamento de FÁsica de la Materia Condensada, ETSII, Universidad de Valladolid, Valladolid,47011, Spain
M. Avella
Affiliation:
Departamento de FÁsica de la Materia Condensada, ETSII, Universidad de Valladolid, Valladolid,47011, Spain
J. Jiménez*
Affiliation:
Departamento de FÁsica de la Materia Condensada, ETSII, Universidad de Valladolid, Valladolid,47011, Spain
E. Gil-Lafon
Affiliation:
LASMEA UMR CNRS 6602, Université Blaise Pascal, Les Cézeaux, 63177 Aubiére Cedex, France
B. Gérard
Affiliation:
THALES, Corporate Research Laboratory, 91404 Orsay Cedex, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Optical studies of conformal GaAs layers grown on silicon substrates were carried out by cathodoluminescence, photoluminescence imaging, and micro-Raman spectroscopy. These techniques revealed, in the conformal GaAs layers, local variations of the luminescence intensity with the shape of stripes both parallel and perpendicular to the GaAs seed, associated with local variations of tensile stress. The cathodoluminescence and micro-Raman spectra suggest that this distribution of tensile stress plays an important role in the formation of mid-gap states responsible for the variations of the luminescence intensity. The high luminescence emission of the conformal GaAs layers compared to the emission of the GaAs seed grown directly on the Si substrate is consistent with the high quality of the conformal layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fischer, R., Chand, N., Kopp, W.F., Peng, C.K., Morkoc, H., Gleason, K.R., and Scheitlin, D., IEEE Trans. Electron. Devices 25, 619 (1978).Google Scholar
2.Fang, S.F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990).Google Scholar
3.Otsuka, N., Choi, C., Kolodziejski, L.A., Gunshor, R.L., Fischer, R., Peng, C.K., Morkoc, H., Nakamura, Y., and Nagakura, S., J. Vac. Sci. Technol. B 4, 896 (1986).CrossRefGoogle Scholar
4.Pearton, S.J., Abernathy, C.R., Caruso, R., Vernon, S.M., Short, K.T., Brown, J.M., Chu, S.N.G., Stavola, M., and Haven, V.E., J. Appl. Phys. 63, 775 (1988).CrossRefGoogle Scholar
5.z, Z.R. Zytkiewic and Domagala, J., Appl. Phys. Lett. 75, 2749 (1999).Google Scholar
6.Pribat, D., Gerard, B., Dupuy, M., and Legagneux, P., Appl. Phys. Lett. 60, 2144 (1992).CrossRefGoogle Scholar
7.Gil-Lafon, E., Napierala, J., Castelluci, D., Pimpinelli, A., Cadoret, R., and Gerard, B., J. Crys. Growth 222, 482 (2001).CrossRefGoogle Scholar
8.Gerard, B. and Pribat, D., Inst. Phys. Conf. Ser. 166, 23 (2000).Google Scholar
9.Chen, Y., Freundlich, A., Kamada, H., and Neu, G., Appl. Phys. Lett. 54, 45 (1989).CrossRefGoogle Scholar
10.Stolz, W., Guimaraes, F.E.G., and Ploog, K., J. Appl. Phys. 63, 492 (1988).CrossRefGoogle Scholar
11.Kuo, P., Vong, S.K., Cohen, R.M., and Stringfellow, G.B., J. Appl. Phys. 57, 5428 (1985).CrossRefGoogle Scholar
12.Yacobi, G., Zemon, S., Norris, P., Jagannath, C., and Sheldon, P., Appl. Phys. Lett. 51, 2236 (1987).CrossRefGoogle Scholar
13.Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., and Washburn, J., J. Appl. Phys. 58, 374 (1985).CrossRefGoogle Scholar
14.Mart´nez, O., Avella, M., Puente, E. de la, Gonza´lez, M.A., Jime´nez, J., Ge´rard, B., and Gil-Lafon, E., Mat. Sci, & Eng. B 80, 197 (2001).CrossRefGoogle Scholar
15.Madelung, O., Schulz, M., and Weiss, H., in Landolt-Bo¨rstein Tables, Vol. 17a (Springer, New York, 1982).Google Scholar
16.Jagannath, C., Zemon, S., Norris, P., and Elman, B.S., Appl. Phys. Lett. 51, 1268 (1987).CrossRefGoogle Scholar
17.Ardila, A.M., Mart´nez, O., Avella, M., Jime´nez, J., Gerard, B., Napierala, J., and Gil-Lafon, E. (unpublished).Google Scholar
18.Martin, G.M. and , Makram-Ebeid, in Deep Centers in Semiconductors, edited by Pantelides, S.T. (Gordon, Breach Science Publishers, 1986), Chap. 6.Google Scholar
19.Saravanan, S., Adachi, M., Satoh, N., Soga, T., Jimbo, T., and Umeno, M., Mater. Sci. Eng. B 68, 166 (2000).CrossRefGoogle Scholar
20.Fischer, R., Morkoc, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L.P., J. Appl. Phys. 60, 1640 (1986).CrossRefGoogle Scholar
21.Pollak, H., in Chemical Analysis Series, Vol. 114, edited by Graselli, J.G. and Bulkin, B.J. (John Wiley & Sons, 1991), Chap. 6.Google Scholar
22.Ardila, A.M., Mart´nez, O., Avella, M., Jime´nez, J., Ge´rard, B., Napierala, J., and Gil-Lafon, E., Appl. Phys. Lett. 79, 1270 (2001).CrossRefGoogle Scholar
23.Holtz, M., Seon, M., Brafman, O., Manor, R., and Fekete, D., Phys. Rev. B 54, 8714 (1996).CrossRefGoogle Scholar