Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:52:49.592Z Has data issue: false hasContentIssue false

Optical absorption of rare-earth-doped BeF2 glasses

Published online by Cambridge University Press:  03 March 2011

P. A. Tick
Affiliation:
Corning Glass Works, Corning, New York 14831
Get access

Abstract

BeF2 glasses are potentially useful materials for light transmission in the near infrared region of the spectrum. While the intrinsic attenuation of BeF2 is thought to be much lower than silica, the optimum wavelength will be further in the infrared, near 2.1 μ. In this spectral region impurities other than transition metals may be important—rare earths, for example. The data required to estimate the contributions to attenuation are normally not available; hence it is the purpose of the present work to provide that information. Using a binary BeF2/ThF4 glass, the optical absorption spectra of a number of rare earths are measured. The experimental procedures, optical spectra, and absorption strength are described.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schroeder, J., Rensselaer Polytechnic Institute (private communication).Google Scholar
2Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J., Handbook of the Thermophysical Properties of Solid Materials (McMillan, New York, 1961).Google Scholar
3Williams, R. T., Nagel, D. J., Klein, P. H., and Weber, M. J., J. Appl. Phys. 52, 6279 (1981).CrossRefGoogle Scholar
4Dumbaugh, W. H. and Morgan, D. W., J. Non-Cryst. Solids 38–39, 211 (1980).CrossRefGoogle Scholar
5Zhmyreva, I. A., Kovaleva, I. V., Kolobov, V. P., Mokeeva, P. I., Petrovskii, G. T., and Tsurikova, G. A., Opt. Spektrosk. 22(3), 509 (1967).Google Scholar
6Petrovskii, G. T., Feofllov, P. P., and Tsurikova, G. A., Opt. Spektrosk. 20(3), 519 (1966).Google Scholar
7Tolshoi, M. N. and Tsurikova, G. A., Steklo Tr. Gos Nauch-Issled Inst. Stekla 1, 92 (1967).Google Scholar
8Zakharov, V. K., Petrovskii, G. T., Tsurikova, G. A., and Yudin, D. M., Opt. Spektrosk. 28(6), 1164 (1970).Google Scholar
9Brawer, S. and Weber, M., J. Non-Cryst. Solids 38–39, 9 (1980).CrossRefGoogle Scholar
10Brawer, S. A. and Weber, M. J., Phys. Rev. Lett. 45, 460 (1980).CrossRefGoogle Scholar
11Weber, M. J. and Brawer, S. A., J. Non-Cryst. Solids 52, 321 (1982).CrossRefGoogle Scholar
12Feofilov, P. D., Tsurikova, G. A., and Petrovskii, G. T., Opt. Spektrosk. 21, 779 (1966).Google Scholar
13Doronina, V. P., Isupova, L. A., Lazarenko, T. P., and Batsanova, L. R., Izv. Akad. Nauk SSSR, Neorg. Mater. 3(8), 1500 (1967).Google Scholar
14Ohishi, Y., Mitachi, S., Shibata, S., and Manabe, T., Jpn. J. Appl. Phys. 20, 191 (1980).CrossRefGoogle Scholar
15Dieke, G. H., Spectra and Energy Levels of Rare-earth Ions in Crystals (Interscience, New York, 1968).Google Scholar